Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mareike Florek is active.

Publication


Featured researches published by Mareike Florek.


PLOS ONE | 2014

Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation.

Emanuela Sega; Dennis B. Leveson-Gower; Mareike Florek; Dominik Schneidawind; Richard Luong; Robert S. Negrin

Lag-3 has emerged as an important molecule in T cell biology. We investigated the role of Lag-3 in conventional T cell (Tcon) and regulatory T cell (Treg) function in murine GVHD with the hypothesis that Lag-3 engagement diminishes alloreactive T cell responses after bone marrow transplantation. We demonstrate that Lag-3 deficient Tcon (Lag-3−/− Tcon) induce significantly more severe GVHD than wild type (WT) Tcon and that the absence of Lag-3 on CD4 but not CD8 T cells is responsible for exacerbating GVHD. Lag-3−/− Tcon exhibited increased activation and proliferation as indicated by CFSE and bioluminescence imaging analyses and higher levels of activation markers such as CD69, CD107a, granzyme B, and Ki-67 as well as production of IL-10 and IFN-g early after transplantation. Lag-3−/− Tcon were less responsive to suppression by WT Treg as compared to WT Tcon. The absence of Lag-3, however, did not impair Treg function as both Lag-3−/− and WT Treg equally suppress the proliferation of Tcon in vitro and in vivo and protect against GVHD. Further, we demonstrate that allogeneic Treg acquire recipient MHC class II molecules through a process termed trogocytosis. As MHC class II is a ligand for Lag-3, we propose a novel suppression mechanism employed by Treg involving the acquisition of host MHC-II followed by the engagement of Lag-3 on T cells. These studies demonstrate for the first time the biologic function of Lag-3 expression on conventional and regulatory T cells in GVHD and identify Lag-3 as an important regulatory molecule involved in alloreactive T cell proliferation and activation after bone marrow transplantation.


Blood | 2013

A distinct evolution of the T cell repertoire categorizes treatment refractory gastrointestinal acute graft-versus-host disease

Everett Meyer; Andro Hsu; Joanna Liliental; Andrea Löhr; Mareike Florek; James L. Zehnder; Samuel Strober; Philip W. Lavori; David B. Miklos; David Scott Johnson; Robert S. Negrin

Steroid refractory gastrointestinal (GI) acute graft-versus-host disease (aGVHD) is a major cause of mortality in hematopoietic stem cell transplantation (HCT) without immune markers to establish a diagnosis or guide therapy. We found that T-cell receptor β (TCRβ) complementarity-determining region 3 repertoire sequencing reveals patterns that could eventually serve as a disease biomarker of T-cell alloreactivity in aGVHD. We identified T-cell clones in GI biopsies in a heterogeneous group of 15 allogeneic HCT patients with GI aGVHD symptoms. Seven steroid-refractory aGVHD patients showed a more conserved TCRβ clonal structure between different biopsy sites in the GI tract than 8 primary therapy-responsive patients. Tracking GI clones identified longitudinally at endoscopy in the blood also revealed an increased clonal expansion in patients with steroid-refractory disease. Immune repertoire sequencing-based methods could enable a novel personalized way to guide diagnosis and therapy in diseases where T-cell activity is a major determinant.


Bone Marrow Transplantation | 2012

Sirolimus and mycophenolate mofetil as GVHD prophylaxis in myeloablative, matched-related donor hematopoietic cell transplantation

Laura J. Johnston; Mareike Florek; R Armstrong; Js McCune; Sally Arai; Janice M. Brown; Ginna G. Laport; Robert Lowsky; David B. Miklos; Judith A. Shizuru; K Sheehan; Philip W. Lavori; Robert S. Negrin

We investigated sirolimus and mycophenolate mofetil (MMF) as GVHD prophylaxis in patients with advanced hematological malignancies receiving myeloablative hematopoietic cell transplantation (HCT) from HLA-identical sibling donors. On the basis of pre-study stopping rules, the trial was closed to accrual after enrollment of 11 adult patients. In all, 7 of the 11 patients received BU-containing preparative regimens. Sirolimus was discontinued in three patients because of the toxicity-related events of severe sinusoidal obstructive syndrome, portal vein thrombosis, altered mental status and in one patient because of the risk of poor wound healing. In all, 6 of the 11 patients developed grade II–IV acute GVHD (AGVHD) a median of 15.5 days post HCT. Two of three patients with grade IV AGVHD had sirolimus discontinued by 9 days post HCT. All patients responded to AGVHD therapy without GVHD-related deaths. There were two non-relapse- and two relapse-related deaths. At a median follow-up of 38 months (2–47 months), 7 of 11 patients were alive without disease. MMF and sirolimus GVHD prophylaxis did not reduce the risk of AGVHD, however, there were no GVHD-related deaths. The severe toxicities in the patients receiving the BU-containing preparative regimens limited the continued use of sirolimus and MMF for the prevention of AGVHD.


Blood | 2013

Mast cells suppress murine GVHD in a mechanism independent of CD4 + CD25 + regulatory T cells

Dennis B. Leveson-Gower; Emanuela Sega; Janet Kalesnikoff; Mareike Florek; Yuqiong Pan; Antonio Pierini; Stephen J. Galli; Robert S. Negrin

To investigate the role of mast cells in hematopoietic cell transplantation, we assessed graft-versus-host disease (GVHD) in C57BL/6-Kit(W-sh/W-sh) recipients, which virtually lack mast cells, compared with C57BL/6 WT recipients. GVHD was severely exacerbated in C57BL/6-Kit(W-sh/W-sh) mice (median survival time = 13 vs 60 days in wild-type [WT] mice; P < .0001). The increased mortality risk in C57BL/6-Kit(W-sh/W-sh) hosts correlated with increased T-cell numbers in lymph nodes, liver, and gastrointestinal tract sites, as indicated by bioluminescence imaging (P < .001). We did not detect any deficit in the number or function of CD4(+)CD25(+) regulatory T cells (Tregs) in C57BL/6-Kit(W-sh/W-sh) mice. Furthermore, Tregs were equally effective at reducing GVHD in C57BL/6-Kit(W-sh/W-sh) recipients compared with WT recipients containing mast cells. Furthermore, we found that survival of C57BL/6-Kit(W-sh/W-sh) mice during GVHD was significantly improved if the mice were engrafted with bone marrow-derived cultured mast cells from WT C57BL/6 mice but not from interleukin (IL)-10-deficient C57BL/6 mice. These data indicate that the presence of mast cells can significantly reduce GVHD independently of Tregs, by decreasing conventional T-cell proliferation in a mechanism involving IL-10. These experiments support the conclusion that mast cells can mediate a novel immunoregulatory role during hematopoietic cell transplantation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Allogeneic T cells impair engraftment and hematopoiesis after stem cell transplantation

Antonia M. S. Müller; Jessica A. Linderman; Mareike Florek; David B. Miklos; Judith A. Shizuru

Because of the perception that depleting hematopoietic grafts of T cells will result in poorer immune recovery and in increased risk of graft rejection, pure hematopoietic stem cells (HSC), which avoid the potentially lethal complication of graft-versus-host disease (GVHD), have not been used for allogeneic hematopoietic cell transplantation (HCT) in humans. Ideal grafts should contain HSC plus mature cells that confer only the benefits of protection from pathogens and suppression of malignancies. This goal requires better understanding of the effects of each blood cell type and its interactions during engraftment and immune regeneration. Here, we studied hematopoietic reconstitution post-HCT, comparing grafts of purified HSC with grafts supplemented with T cells in a minor histocompatibility antigen (mHA)-mismatched mouse model. Cell counts, composition, and chimerism of blood and lymphoid organs were evaluated and followed intensively through the first month, and then subsequently for up to 1 yr. Throughout this period, recipients of pure HSC demonstrated superior total cell recovery and lymphoid reconstitution compared with recipients of T cell-containing grafts. In the latter, rapid expansion of T cells occurred, and suppression of hematopoiesis derived from donor HSC was observed. Our findings demonstrate that even early post-HCT, T cells retard donor HSC engraftment and immune recovery. These observations contradict the postulation that mature donor T cells provide important transient immunity and facilitate HSC engraftment.


Journal of Immunology | 2015

Donor Requirements for Regulatory T Cell Suppression of Murine Graft-versus-Host Disease

Antonio Pierini; Lucrezia Colonna; Maite Alvarez; Dominik Schneidawind; Hidekazu Nishikii; Jeanette Baker; Yuqiong Pan; Mareike Florek; Byung-Su Kim; Robert S. Negrin

Adoptive transfer of freshly isolated natural occurring CD4+CD25+Foxp3+ regulatory T cells (Treg) prevents graft-versus-host disease (GVHD) in several animal models and following hematopoietic cell transplantation (HCT) in clinical trials. Donor-derived Treg have been mainly used, as they share the same MHC with CD4+ and CD8+ conventional T cells (Tcon) that are primarily responsible for GVHD. Third party–derived Treg are a promising alternative for cellular therapy, as they can be prepared in advance, screened for pathogens and activity, and banked. We explored MHC disparities between Treg and Tcon in HCT to evaluate the impact of different Treg populations in GVHD prevention and survival. Third-party Treg and donor Treg are equally suppressive in ex vivo assays, whereas both donor and third-party but not host Treg protect from GVHD in allogeneic HCT, with donor Treg being the most effective. In an MHC minor mismatched transplantation model (C57BL/6 → BALB/b), donor and third-party Treg were equally effective in controlling GVHD. Furthermore, using an in vivo Treg depletion mouse model, we found that Treg exert their main suppressive activity in the first 2 d after transplantation. Third-party Treg survive for a shorter period of time after adoptive transfer, but despite the shorter survival, they control Tcon proliferation in the early phases of HCT. These studies provide relevant insights on the mechanisms of Treg-mediated protection from GVHD and support for the use of third-party Treg in clinical trials.


Blood | 2014

Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models.

Mareike Florek; Emanuela Sega; Dennis B. Leveson-Gower; Jeanette Baker; Antonia M. S. Müller; Dominik Schneidawind; Everett Meyer; Robert S. Negrin

Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting.


Blood | 2014

Donor hematopoiesis in mice following total lymphoid irradiation requires host T-regulatory cells for durable engraftment.

Antonia M. S. Müller; Jessica Poyser; Natascha J. Küpper; Cassandra E. Burnett; Rose M. Ko; Holbrook Kohrt; Mareike Florek; Pei Zhang; Robert S. Negrin; Judith A. Shizuru

Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc(-/-) recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc(-/-) recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc(-/-) recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Co-transplantation of pure blood stem cells with antigen-specific but not bulk T cells augments functional immunity

Antonia M. S. Müller; Sumana Shashidhar; Natascha J. Küpper; Holbrook Kohrt; Mareike Florek; Robert S. Negrin; Janice M. Brown; Judith A. Shizuru

Impaired immunity is a fundamental obstacle to successful allogeneic hematopoietic cell transplantation. Mature graft T cells are thought to provide protection from infections early after transplantation, but can cause life-threatening graft-vs.-host disease. Human CMV is a major pathogen after transplantation. We studied reactivity against the mouse homologue, murine CMV (MCMV), in lethally irradiated mice given allogeneic purified hematopoietic stem cells (HSCs) or HSCs supplemented with T cells or T-cell subsets. Unexpectedly, recipients of purified HSCs mounted superior antiviral responses compared with recipients of HSC plus unselected bulk T cells. Furthermore, supplementation of purified HSC grafts with CD8+ memory or MCMV-specific T cells resulted in enhanced antiviral reactivity. Posttransplantation lymphopenia promoted massive expansion of MCMV-specific T cells when no competing donor T cells were present. In recipients of pure HSCs, naive and memory T cells and innate lymphoid cell populations developed. In contrast, the lymphoid pool in recipients of bulk T cells was dominated by effector memory cells. These studies show that pure HSC transplantations allow superior protective immunity against a viral pathogen compared with unselected mature T cells. This reductionist transplant model reveals the impact of graft composition on regeneration of host, newly generated, and mature transferred T cells, and underscores the deleterious effects of bulk donor T cells. Our findings lead us to conclude that grafts composed of purified HSCs provide an optimal platform for in vivo expansion of selected antigen-specific cells while allowing the reconstitution of a naive T-cell pool.


PLOS ONE | 2015

Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease

Mareike Florek; Dominik Schneidawind; Antonio Pierini; Jeanette Baker; Randall Armstrong; Yuqiong Pan; Dennis B. Leveson-Gower; Robert S. Negrin; Everett Meyer

The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in murine models of allogeneic hematopoietic cell transplantation (HCT) has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD) and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L), which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies.

Collaboration


Dive into the Mareike Florek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge