Mareike Godolt
German Aerospace Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mareike Godolt.
Planetary and Space Science | 2015
Mareike Godolt; John Lee Grenfell; A Hamann-Reinus; D Kitzmann; Markus Kunze; Ulrike Langematz; P von Paris; A. B. C. Patzer; H. Rauer; Barbara Stracke
Abstract The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface, since life as we know it needs liquid water at least during a part of its life cycle. The potential presence of liquid water on a planetary surface depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planets host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars (F, G, and K-type stars) upon the climate of Earth-like extrasolar planets and their potential habitability by applying a state-of-the-art three-dimensional (3D) Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances (and corresponding orbital periods) where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results obtained have been compared to those of a one-dimensional (1D) radiative convective climate model to investigate the approximation of global mean 3D results by those of 1D models. The different stellar spectral energy distributions lead to different surface temperatures and due to ozone heating to very different vertical temperature structures. As previous 1D studies we find higher surface temperatures for the Earth-like planet around the K-type star, and lower temperatures for the planet around the F-type star compared to an Earth-like planet around the Sun. However, this effect is more pronounced in the 3D model results than in the 1D model because the 3D model accounts for feedback processes such as the ice-albedo and the water vapor feedback. Whether the 1D model may approximate the global mean of the 3D model results strongly depends on the choice of the relative humidity profile in the 1D model, which is used to determine the water vapor profile. Hence, possible changes in the hydrological cycle need to be accounted for when estimating the potential habitability of an extrasolar planet.
Monthly Notices of the Royal Astronomical Society | 2015
Daniel Kitzmann; Yann Alibert; Mareike Godolt; John Lee Grenfell; Kevin Heng; A. B. C. Patzer; H. Rauer; Barbara Stracke; P. von Paris
Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planets surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
Astronomy and Astrophysics | 2017
Nicola Tosi; Barbara Stracke; Mareike Godolt; Thomas Ruedas Gomez; Lee Grenfell; Dennis Höning; Athanasia Nikolaou; Ana-Catalina Plesa; Doris Breuer; Tilman Spohn
Context. Plate tectonics is considered a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. Aims. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H 2 O and CO 2 , and resulting climate of an Earth-like planet lacking plate tectonics. Methods. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H 2 O and CO 2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). Results. The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H 2 O and CO 2 . The maximal partial pressure of H 2 O is limited to a few tens of bars by the high solubility of water in basaltic melts. The low solubility of CO 2 instead causes most of the carbon to be outgassed, with partial pressures that vary from 1 bar or less if reducing conditions are assumed for the mantle to 100–200 bar for oxidizing conditions. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO 2 , the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. Conclusions. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO 2 , can vary in a non-monotonic way depending on the extent of the outgassed H 2 O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.
Astronomy and Astrophysics | 2016
Mareike Godolt; John Lee Grenfell; Daniel Kitzmann; M. Kunze; Ulrike Langematz; A. B. C. Patzer; H. Rauer; Barbara Stracke
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
Astronomy and Astrophysics | 2017
Daniel Angerhausen; C. Dreyer; Ben Placek; Sz. Csizmadia; Ph. Eigmüller; Mareike Godolt; Daniel Kitzmann; M. Mallonn; Eric E. Becklin; Peter L. Collins; Edward W. Dunham; John Lee Grenfell; Ryan T. Hamilton; P. Kabath; Sarah E. Logsdon; Avi M. Mandell; Georgi Mandushev; M. W. McElwain; Ian S. McLean; E. Pfueller; H. Rauer; M. Savage; Sachindev S. Shenoy; William D. Vacca; J. E. Van Cleve; M. Wiedemann; Jürgen Wolf
Context. The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth or mini-Neptune planets is unknown in our solar system, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. Aims. GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA) add information in the Paschen- α cont. 1.9 μ m infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. Methods. We used FLIPO, the combination of the High-speed Imaging Photometer for Occultations (HIPO) and the First Light Infrared TEst CAMera (FLITECAM) and the Focal Plane Imager (FPI+) on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. Results. We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and current synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIA’s potential in this field and suggest future improvements.
Icarus | 2015
P. von Paris; Franck Selsis; Mareike Godolt; John Lee Grenfell; H. Rauer; Barbara Stracke
Abstract Ozone is an important radiative trace gas in the Earth’s atmosphere and has also been detected on Venus and Mars. The presence of ozone can significantly influence the thermal structure of an atmosphere due to absorption of stellar UV radiation, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. Therefore, we investigate the effect of ozone on the temperature structure of simulated early martian atmospheres. With a 1D radiative–convective model, we calculate temperature–pressure profiles for a 1xa0bar carbon dioxide atmosphere containing various amounts of ozone. These ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1–10xa0mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorption. This heating of the middle atmosphere strongly reduces the zone of carbon dioxide condensation, hence the potential formation of carbon dioxide clouds. For high ozone concentrations, the formation of carbon dioxide clouds is inhibited in the entire atmosphere. In addition, due to the heating of the middle atmosphere, the cold trap is located at increasingly higher pressures when increasing ozone. This leads to wetter stratospheres hence might increase water loss rates on early Mars. However, increased stratospheric H2O would lead to more HOx, which could efficiently destroy ozone by catalytic cycles, essentially self-limiting the increase of ozone. This result emphasizes the need for consistent climate-chemistry calculations to assess the feedback between temperature structure, water content and ozone chemistry. Furthermore, convection is inhibited at high ozone amounts, leading to a stably stratified atmosphere.
Planetary and Space Science | 2014
Markus Kunze; Mareike Godolt; Ulrike Langematz; John Lee Grenfell; A Hamann-Reinus; H. Rauer
Planetary and Space Science | 2014
Lena Noack; Mareike Godolt; P von Paris; Ana-Catalina Plesa; Barbara Stracke; Doris Breuer; H. Rauer
The Astronomy and Astrophysics Review | 2018
H. Lammer; Aubrey L. Zerkle; Stefanie Gebauer; Nicola Tosi; Lena Noack; Manuel Scherf; Elke Pilat-Lohinger; M. Güdel; John Lee Grenfell; Mareike Godolt; Athanasia Nikolaou
Archive | 2017
J L Grenfell; M. Scheucher; Mareike Godolt; F Tabataba-Vakili; J.-M. Griessmeier; Heike Rauer