Marek Cezary Zdun
Pedagogical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marek Cezary Zdun.
Aequationes Mathematicae | 1989
Marek Cezary Zdun
SummaryWe investigate the continuous and measurable solutions of the system of Abels functional equations(1)
Aequationes Mathematicae | 1992
Marek Cezary Zdun
Aequationes Mathematicae | 1985
Marek Cezary Zdun
\begin{gathered} \varphi (f(x)) = \varphi (x) + 1 \hfill \\ ,x \in (a,b) \hfill \\ \varphi (g(x)) = \varphi (x) + s \hfill \\ \end{gathered}
Fixed Point Theory and Applications | 2009
Krzysztof Ciepliński; Marek Cezary Zdun
International Journal of Bifurcation and Chaos | 2003
Krzysztof Ciepliński; Marek Cezary Zdun
and their applications to the iteration theory. Let us assume the following hypothesis: (H)f, g: (a, b) → (a, b) are continuous bijections andf º g = g º f. Moreoverfn(x) ≠ gm(x) for everyx∈(a, b) and everyn, m ∈ ℤ such that |n| + |m| ≠ 0.LetL be the set of limit points of {fnº gm(x): n, m ∈ ℤ}, wherex ∈(a, b) (L does not depend ofx). The setL is either a perfect and nowhere dense set orL = 〈a, b〉.Theorem.If f and g satisfy hypothesis (H), then there is a unique s ∈ ℝ such that the system (1) has a continuous solution. For this s the system (1) has a continuous solution ϕ unique up to an additive constant. This solution ϕ is monotonic, ϕ[L ⋂ (a, b)] = ℝ and s is irrational. Moreover ϕ is invertible if and only if L = 〈a, b〉.Corollary.Let f and g satisfy hypothesis (H). Then there exists a continuous iteration group {ftt} such that ft1 =f and g ∈ {ft} if and only if L = 〈a, b〉. Moreover this iteration group is unique. Further let us assume the following hypothesis:(C)f, g: (a, b) →(a, b) are continuous bijections such thatf(x) ≠ x, g(x) ≠ x forx ∈(a, b), fºg=gºf andfn =gm for somen, m ∈ ℤ\{0}.Theorem.Let hypothesis (C) be fulfilled. Then the system (1) for s = n/m has a continuous and invertible solution. This solution depends on an arbitrary function.Corollary.Let f and g satisfy hypothesis (C), then there exist infinitely many continuous iteration groups {ft} such that f1 =f and g ∈ {ft}.
Journal of Difference Equations and Applications | 2013
Marek Cezary Zdun
SummaryWe give a general construction of iteration groups of continuous functionsG:= {ft,t ∈ ℝ}} on an interval (a, b) such thatft(x) ≠ x forx ∈ (a, b) providedft≠ id. Two cases may occur(i)For everys, t ∈ ℝ such thatfs≠ id andft≠ id there existn, m ∈ ℤ such that|n| + |m| ≠ 0 andfns =fmt(ii)There exists, t ∈ ℝ such thatfs≠ id andft≠ id and for everyn, m ∈ ℤ, |n| + |m| ≠ 0, fns≠ fmt.
International Journal of Bifurcation and Chaos | 2003
Marek Cezary Zdun
DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
Archive | 2002
Krzysztof Ciepliński; Marek Cezary Zdun
We investigate the existence and uniqueness of solutions of the functional equation , , where are closed intervals, and , are some continuous piecewise monotone functions. A fixed point principle plays a crucial role in the proof of our main result.
Results in Mathematics | 1994
Marek Cezary Zdun
Let M be an arbitrary nonempty set and for t ∈ M be continuous mappings of the unit circle . The aim of this paper is to investigate the existence of solutions (Φ, c), where is a continuous function and , of the following system of Schroder equations The particular case when card M = 1 is also considered.
Journal of Difference Equations and Applications | 2014
Marek Cezary Zdun
Let be an open set, be a bijection of class and be a globally attractive fixed point of F. Assume that has a real logarithm and the eigenvalues of F satisfy and . Then for every real matrices A and T such that and , where is a fixed integer, there exists the unique iteration semigroup such that and are of class and and the unique iterative root G of order k of F of class such that . They are given by the formulae The iterative roots and iteration semigroups of class are also considered.