Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marek J. Pecyna is active.

Publication


Featured researches published by Marek J. Pecyna.


Applied Microbiology and Biotechnology | 2010

New and classic families of secreted fungal heme peroxidases.

Martin Hofrichter; René Ullrich; Marek J. Pecyna; Christiane Liers; Taina Lundell

Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the “classic” fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments.


Applied Microbiology and Biotechnology | 2009

Molecular characterization of aromatic peroxygenase from Agrocybe aegerita

Marek J. Pecyna; René Ullrich; Britta Bittner; Andre Clemens; Katrin Scheibner; Roland Schubert; Martin Hofrichter

Recently, a novel group of fungal peroxidases, known as the aromatic peroxygenases (APO), has been discovered. Members of these extracellular biocatalysts produced by agaric basidiomycetes such as Agrocybe aegerita or Coprinellus radians catalyze reactions—for example, the peroxygenation of naphthalene, toluene, dibenzothiophene, or pyridine—which are actually attributed to cytochrome P450 monooxygenases. Here, for the first time, genetic information is presented on this new group of peroxide-consuming enzymes. The gene of A. aegerita peroxygenase (apo1) was identified on the level of messenger RNA and genomic DNA. The gene sequence was affirmed by peptide sequences obtained through an Edman degradation and de novo peptide sequencing of the purified enzyme. Quantitative real-time reverse transcriptase polymerase chain reaction demonstrated that the course of enzyme activity correlated well with that of mRNA signals for apo1 in A. aegerita. The full-length sequences of A. aegerita peroxygenase as well as a partial sequence of C. radians peroxygenase confirmed the enzymes’ affiliation to the heme-thiolate proteins. The sequences revealed no homology to classic peroxidases, cytochrome P450 enzymes, and only little homology (<30%) to fungal chloroperoxidase produced by the ascomycete Caldariomyces fumago (and this only in the N-terminal part of the protein comprising the heme-binding region and part of the distal heme pocket). This fact reinforces the novelty of APO proteins. On the other hand, homology retrievals in genetic databases resulted in the identification of various APO homologous genes and transcripts, particularly among the agaric fungi, indicating APO’s widespread occurrence in the fungal kingdom.


Journal of Biological Chemistry | 2013

Structural Basis of Substrate Conversion in a New Aromatic Peroxygenase CYTOCHROME P450 FUNCTIONALITY WITH BENEFITS

Klaus Piontek; Eric Strittmatter; René Ullrich; Glenn Gröbe; Marek J. Pecyna; Martin Kluge; Katrin Scheibner; Martin Hofrichter; Dietmar A. Plattner

Background: Aromatic peroxygenases (APOs) are the “missing link” between heme peroxidases and P450-monooxygenases. Results: Based on two crystal structures the substrate conversion of APOs is elucidated. Conclusion: The specific design of the heme cavity and the distal heme access channel govern substrate specificity. Significance: APOs can be utilized in biotechnology and organic synthesis having significant advantages when compared with cytochrome P450 enzymes. Aromatic peroxygenases (APOs) represent a unique oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity and were thus recently assigned a distinct EC classification (EC 1.11.2.1). They catalyze, inter alia, oxyfunctionalization reactions of aromatic and aliphatic hydrocarbons with remarkable regio- and stereoselectivities. When compared with cytochrome P450, APOs appear to be the choice enzymes for oxyfunctionalizations in organic synthesis due to their independence from a cellular environment and their greater chemical versatility. Here, the first two crystal structures of a heavily glycosylated fungal aromatic peroxygenase (AaeAPO) are described. They reveal different pH-dependent ligand binding modes. We model the fitting of various substrates in AaeAPO, illustrating the way the enzyme oxygenates polycyclic aromatic hydrocarbons. Spatial restrictions by a phenylalanine pentad in the active-site environment govern substrate specificity in AaeAPO.


Molecular Ecology | 2016

Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition.

Witoon Purahong; Tesfaye Wubet; Guillaume Lentendu; Michael Schloter; Marek J. Pecyna; Danuta Kapturska; Martin Hofrichter; Dirk Krüger; François Buscot

Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (R = 0.76, P < 0.001) and community structure (RMantel = 0.85, P < 0.001), providing evidence of coupled dynamics in the fungal and bacterial communities. A network analysis highlighted nonrandom co‐occurrences among bacterial and fungal taxa as well as a shift in the cross‐kingdom co‐occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross‐kingdom functional succession.


PLOS ONE | 2014

Widespread occurrence of expressed fungal secretory peroxidases in forest soils

Harald Kellner; Patricia Luis; Marek J. Pecyna; Florian Barbi; Danuta Kapturska; Dirk Krüger; Donald R. Zak; Roland Marmeisse; Micheline Vandenbol; Martin Hofrichter

Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.


AMB Express | 2011

High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula.

Glenn Gröbe; René Ullrich; Marek J. Pecyna; Danuta Kapturska; Stephanie Friedrich; Martin Hofrichter; Katrin Scheibner

An extracellular peroxygenase from Marasmius rotula was produced in liquid culture, chromatographically purified and partially characterized. This is the third aromatic peroxygenase (APO) that has been characterized in detail and the first one that can be produced in high yields. The highest enzyme levels of about 41,000 U l-1 (corresponding to appr. 445 mg l-1 APO protein) exceeded the hitherto reported levels more than 40-fold and were detected in carbon- and nitrogen-rich complex media. The enzyme was purified by FPLC to apparent homogeneity (SDS-PAGE) with a molecular mass of 32 kDa (27 kDa after deglycosylation) and isoelectric points between 4.97 and 5.27. The UV-visible spectrum of the native enzyme showed a characteristic maximum (Soret band) at 418 nm that shifted after reduction with sodium dithionite and flushing with carbon monoxide to 443 nm. The pH optimum of the M. rotula enzyme was found to vary between pH 5 and 6 for most reactions studied. The apparent Km- values for 2,6-dimethoxyphenol, benzyl alcohol, veratryl alcohol, naphthalene and H2O2 were 0.133, 0.118, 0.279, 0.791 and 3.14 mM, respectively. M. rotula APO was found to be highly stable in a pH range from 5 to 10 as well as in the presence of organic solvents (50% vol/vol) such as methanol, acetonitrile and N,N-dimethylformamide. Unlike other APOs, the peroxygenase of M. rotula showed neither brominating nor chlorinating activities.


PLOS ONE | 2014

Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

Witoon Purahong; Danuta Kapturska; Marek J. Pecyna; Elke Schulz; Michael Schloter; François Buscot; Martin Hofrichter; Dirk Krüger

Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.


Scientific Reports | 2015

Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe

Witoon Purahong; Michael Schloter; Marek J. Pecyna; Danuta Kapturska; Veronika Däumlich; Sanchit Mital; François Buscot; Martin Hofrichter; Jessica L. M. Gutknecht; Dirk Krüger

The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.


Applied and Environmental Microbiology | 2012

The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

Do Huu Nghi; Britta Bittner; Harald Kellner; Nico Jehmlich; René Ullrich; Marek J. Pecyna; Paula Nousiainen; Jussi Sipilä; Le Mai Huong; Martin Hofrichter; Christiane Liers

ABSTRACT Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses.


Applied and Environmental Microbiology | 2012

Differential Regulation by Organic Compounds and Heavy Metals of Multiple Laccase Genes in the Aquatic Hyphomycete Clavariopsis aquatica

Magali Solé; Ines Müller; Marek J. Pecyna; Ingo Fetzer; Hauke Harms; Dietmar Schlosser

ABSTRACT To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats.

Collaboration


Dive into the Marek J. Pecyna's collaboration.

Top Co-Authors

Avatar

Martin Hofrichter

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

René Ullrich

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Danuta Kapturska

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Harald Kellner

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dirk Krüger

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

François Buscot

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Witoon Purahong

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Dietmar Schlosser

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Katrin Scheibner

Brandenburg University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nico Jehmlich

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge