Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marek Jakóbisiak is active.

Publication


Featured researches published by Marek Jakóbisiak.


PLOS Medicine | 2008

Statins impair antitumor effects of rituximab by inducing conformational changes of CD20.

Magdalena Winiarska; Jacek Bil; Ewa Wilczek; Grzegorz M. Wilczynski; Malgorzata Lekka; Patrick J. Engelberts; Wendy J.M. Mackus; Elżbieta Górska; Lukasz Bojarski; Tomasz Stoklosa; Dominika Nowis; Zuzanna Kurzaj; Marcin Makowski; Eliza Glodkowska; Tadeusz Issat; Piotr Mrowka; Witold Lasek; Anna Dabrowska-Iwanicka; Grzegorz W. Basak; Maria Wasik; Krzysztof Warzocha; Maciej Siński; Zbigniew Gaciong; Marek Jakóbisiak; Paul Parren; Jakub Golab

Background Rituximab is used in the treatment of CD20+ B cell lymphomas and other B cell lymphoproliferative disorders. Its clinical efficacy might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising antilymphoma effects. The objective of this study was to evaluate the influence of statins on rituximab-induced killing of B cell lymphomas. Methods and Findings Complement-dependent cytotoxicity (CDC) was assessed by MTT and Alamar blue assays as well as trypan blue staining, and antibody-dependent cellular cytotoxicity (ADCC) was assessed by a 51Cr release assay. Statins were found to significantly decrease rituximab-mediated CDC and ADCC of B cell lymphoma cells. Incubation of B cell lymphoma cells with statins decreased CD20 immunostaining in flow cytometry studies but did not affect total cellular levels of CD20 as measured with RT-PCR and Western blotting. Similar effects are exerted by other cholesterol-depleting agents (methyl-β-cyclodextrin and berberine), but not filipin III, indicating that the presence of plasma membrane cholesterol and not lipid rafts is required for rituximab-mediated CDC. Immunofluorescence microscopy using double staining with monoclonal antibodies (mAbs) directed against a conformational epitope and a linear cytoplasmic epitope revealed that CD20 is present in the plasma membrane in comparable amounts in control and statin-treated cells. Atomic force microscopy and limited proteolysis indicated that statins, through cholesterol depletion, induce conformational changes in CD20 that result in impaired binding of anti-CD20 mAb. An in vivo reduction of cholesterol induced by short-term treatment of five patients with hypercholesterolemia with atorvastatin resulted in reduced anti-CD20 binding to freshly isolated B cells. Conclusions Statins were shown to interfere with both detection of CD20 and antilymphoma activity of rituximab. These studies have significant clinical implications, as impaired binding of mAbs to conformational epitopes of CD20 elicited by statins could delay diagnosis, postpone effective treatment, or impair anti-lymphoma activity of rituximab.


Clinical Cancer Research | 2004

Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells.

Ahmad Jalili; Marcin Makowski; Tomasz Switaj; Dominika Nowis; Grzegorz M. Wilczynski; Ewa Wilczek; Magdalena Chorazy-Massalska; Anna Radzikowska; Wlodzimierz Maslinski; Biały Lp; Jacek Sienko; Aleksander Sieroń; Mariusz Adamek; Grzegorz W. Basak; Pawet Mroz; Ireneusz W. Krasnodębski; Marek Jakóbisiak; Jakub Golab

Purpose: The unique mechanism of tumor destruction by photodynamic therapy (PDT), resulting from apoptotic and necrotic killing of tumor cells accompanied by local inflammatory reaction and induction of heat shock proteins (HSPs), prompted us to investigate the antitumor effectiveness of the combination of PDT with administration of immature dendritic cells (DCs). Experimental Design: Confocal microscopy and Western blotting were used to investigate the influence of PDT on the induction of apoptosis and expression of HSP expression in C-26 cells. Confocal microscopy and flow cytometry studies were used to examine phagocytosis of PDT-treated C-26 cells by DCs. Secretion of interleukin (IL)-12 was measured with ELISA. Cytotoxic activity of lymph node cells was evaluated in a standard 51Cr-release assay. The antitumor effectiveness of PDT in combination with administration of DCs was investigated in in vivo model. Results: PDT treatment resulted in the induction of apoptotic and necrotic cell death and expression of HSP27, HSP60, HSP72/73, HSP90, HO-1, and GRP78 in C-26 cells. Immature DCs cocultured with PDT-treated C-26 cells efficiently engulfed killed tumor cells, acquired functional features of maturation, and produced substantial amounts of IL-12. Inoculation of immature DCs into the PDT-treated tumors resulted in effective homing to regional and peripheral lymph nodes and stimulation of cytotoxic activity of T and natural killer cells. The combination treatment with PDT and administration of DCs produced effective antitumor response. Conclusions: The feasibility and antitumor effectiveness demonstrated in these studies suggest that treatment protocols involving the administration of immature DCs in combination with PDT may have clinical potential.


International Journal of Cancer | 1999

Lovastatin and tumor necrosis factor‐α exhibit potentiated antitumor effects against Ha‐ras‐transformed murine tumor Via inhibition of tumor‐induced angiogenesis

Wojciech Feleszko; Ewa Z. Bałkowiec; Elisabeth Sieberth; Maria Marczak; Anna Dabrowska; Adam Giermasz; Anna Czajka; Marek Jakóbisiak

Lovastatin, a drug commonly used in the treatment of hypercholesterolemia, has previously been reported to exert potentiated antitumor activity when combined with either tumor necrosis factor‐α (TNF‐α), cisplatin or doxorubicin in a melanoma model in mice. Since lovastatin interferes with the function of ras oncogene‐encoded (Ras) proteins, we have investigated the antitumor activity of lovastatin and TNF‐α using a Ha‐ras‐transformed murine tumor model. In in vitro studies, lovastatin inhibited the growth of cells transformed with Ha‐ras oncogene (Ras‐3T3 and HBL100‐ras cells) more effectively than control NIH‐3T3 and HBL100‐neo cells. In in vivo experiments, the Ras‐3T3 tumor demonstrated significantly increased sensitivity to combined treatment with both lovastatin (50 mg/kg) and TNF‐α (1 μg/day) compared with either agent alone. Combined treatment with both agents also resulted in greater inhibition of blood‐vessel formation. Ras‐3T3 tumor cells produced increased amounts of vascular endothelial growth factor (VEGF) and lovastatin effectively suppressed VEGF production by these cells. Our results suggest that lovastatin increases antitumor activity of TNF‐α against tumor cells transformed with v‐Ha‐ras oncogene via inhibition of tumor‐induced blood‐vessel formation. Int. J. Cancer 81:560–567, 1999.


International Journal of Cancer | 2002

Lovastatin potentiates antitumor activity of doxorubicin in murine melanoma via an apoptosis-dependent mechanism

Wojciech Feleszko; Izabela Młynarczuk; Dominika Olszewska; Ahmad Jalili; Tomasz Grzela; Witold Lasek; Grazyna Hoser; Grażyna Korczak-Kowalska; Marek Jakóbisiak

Lovastatin, a drug successfully used in the clinic to prevent and to treat coronary heart disease, has recently been reported to decrease the incidence of melanoma in lovastatin‐treated patients. Lovastatin has also been proved to potentiate antitumor effects of both cisplatin and TNF‐α in murine melanoma models. Recently, an augmented therapeutic effect of lovastatin and doxorubicin has been reported in 3 tumor models in mice. In our preliminary study lovastatin caused retardation of melanoma growth in mice treated with doxorubicin (Feleszko et al. J Natl Cancer Inst 1998;90:247–8). In the present report, we supplement our preliminary observations and demonstrate in 2 murine and 2 human melanoma cell lines that lovastatin effectively potentiates the cytostatic/cytotoxic activity of doxorubicin in vitro via an augmentation of apoptosis (estimated with PARP‐cleavage assay, annexin V assay and TUNEL). The combined antiproliferative activity of lovastatin and doxorubicin was evaluated using the combination index (CI) method of Chou and Talalay, revealing synergistic interactions in melanoma cells exposed to lovastatin and doxorubicin. In B16F10 murine melanoma model in vivo, we have demonstrated significantly increased sensitivity to the combined treatment with both lovastatin (5 mg/kg for 14 days) and doxorubicin (4 × 1 mg/kg) as compared with either agent acting alone. Lovastatin treatment resulted also in significant reduction of the number of experimental metastasis in doxorubicin‐treated mice. The results of our studies suggest that lovastatin may enhance the effectiveness of chemotherapeutic agents in the treatment of malignant melanomas.


Cancer Research | 2009

Proteasome Inhibition Potentiates Antitumor Effects of Photodynamic Therapy in Mice through Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response

Angelika Szokalska; Marcin Makowski; Dominika Nowis; Grzegorz M. Wilczynski; Marek Kujawa; Cezary Wójcik; Izabela Młynarczuk-Biały; Pawel Salwa; Jacek Bil; Sylwia Janowska; Patrizia Agostinis; Tom Verfaillie; Marek Bugajski; Jan Gietka; Tadeusz Issat; Eliza Glodkowska; Piotr Mrowka; Tomasz Stoklosa; Michael R. Hamblin; Pawel Mroz; Marek Jakóbisiak; Jakub Golab

Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.


American Journal of Pathology | 2010

Cardiotoxicity of the Anticancer Therapeutic Agent Bortezomib

Dominika Nowis; Michał Mączewski; Urszula Mackiewicz; Marek Kujawa; Anna Ratajska; Mariusz R. Wieckowski; Grzegorz M. Wilczynski; Monika Malinowska; Jacek Bil; Pawel Salwa; Marek Bugajski; Cezary Wójcik; Maciej Siński; Piotr Abramczyk; Magdalena Winiarska; Anna Dąbrowska-Iwanicka; Jerzy Duszyński; Marek Jakóbisiak; Jakub Golab

Recent case reports provided alarming signals that treatment with bortezomib might be associated with cardiac events. In all reported cases, patients experiencing cardiac problems were previously or concomitantly treated with other chemotherapeutics including cardiotoxic anthracyclines. Therefore, it is difficult to distinguish which components of the therapeutic regimens contribute to cardiotoxicity. Here, we addressed the influence of bortezomib on cardiac function in rats that were not treated with other drugs. Rats were treated with bortezomib at a dose of 0.2 mg/kg thrice weekly. Echocardiography, histopathology, and electron microscopy were used to evaluate cardiac function and structural changes. Respiration of the rat heart mitochondria was measured polarographically. Cell culture experiments were used to determine the influence of bortezomib on cardiomyocyte survival, contractility, Ca(2+) fluxes, induction of endoplasmic reticulum stress, and autophagy. Our findings indicate that bortezomib treatment leads to left ventricular contractile dysfunction manifested by a significant drop in left ventricle ejection fraction. Dramatic ultrastructural abnormalities of cardiomyocytes, especially within mitochondria, were accompanied by decreased ATP synthesis and decreased cardiomyocyte contractility. Monitoring of cardiac function in bortezomib-treated patients should be implemented to evaluate how frequently cardiotoxicity develops especially in patients with pre-existing cardiac conditions, as well as when using additional cardiotoxic drugs.


Cytokine & Growth Factor Reviews | 2011

Interleukin 15 as a promising candidate for tumor immunotherapy

Marek Jakóbisiak; Jakub Golab; Witold Lasek

Interleukin 15 participates in the development of important immune antitumor mechanisms. It activates CD8(+) T cells, natural killer (NK) cells, NK T cells, and can promote the formation of antitumor antibodies. IL-15 can also protect T effector cells from the action of T regulatory cells and reverse tolerance to tumor-associated antigens. In pre-clinical studies IL-15 has been found to demonstrate potentiated antitumor effects following pre-association with IL-15Rα, or when used in combination with chemotherapy, adoptive therapy, monoclonal antibodies, and tumor vaccines. Although a clinical trial based on application of IL-15 in tumor patients has already begun, it is important to be aware of its potential side effects, including induction of autoimmunity and promotion of proliferation, survival, and dissemination of some tumor cells.


European Journal of Cancer | 1998

Potentiated antitumour effects of cisplatin and lovastatin against MmB16 melanoma in mice

Wojciech Feleszko; R. Zagożdżon; J. Gołąb; Marek Jakóbisiak

Lovastatin, the drug used in the treatment of hypercholesterolaemia, has previously been reported to exert synergistic antitumour activity in a melanoma model in mice when used together with some immune response modifiers. In this study, we examined the antitumour effect of cisplatin augmented by its combined application with lovastatin, both in vitro and in vivo, in a murine melanoma model. The results of this study suggest that lovastatin may enhance the therapeutic effects of cisplatin in the treatment of malignant melanomas.


Cancer Immunology, Immunotherapy | 1997

Antitumor effects of the combination immunotherapy with interleukin-12 and tumor necrosis factor α in mice

Witold Lasek; Wojciech Feleszko; Jakub Golab; Stokłosa T; Marczak M; Dabrowska A; Malejczyk M; Marek Jakóbisiak

Abstract There is strong evidence that antitumor activity of interleukin-12 (IL-12) in vivo is mediated, in part, through interferon (IFNγ) produced by IL-12-stimulated natural killer and T cells. Since IFNγ and tumor necrosis factor α (TNFα) have been reported to synergize in antitumor effects in a number of models, we decided to examine whether the combined treatment with recombinant mouse IL-12 and recombinant human TNFα would produce similar effects. The efficacy of the combined IL-12/TNFα immunotherapy was evaluated in three tumor models in mice: B16F10 melanoma, Lewis lung (LL/2) carcinoma and L1 sarcoma. Intratumoral daily injections of 1 μg IL-12 in combination with 5 μg TNFα into B16F10-melanoma-bearing mice resulted in a significant retardation of the tumor growth as compared with that in controls and in mice treated with either cytokine alone. Similar effects were obtained using 0.1 μg IL-12 and 5 μg TNFα in LL/2 carcinoma and L1 sarcoma models. Antitumor activity against L1 sarcoma was still preserved when TNFα at a low dose (1 μg) was combined with 0.1 μg IL-12 and applied for a prolonged time. Potentiation of antitumor effects, which was observed in IL-12/TNFα-based immunotherapy, could result from at least three different mechanisms, partly related to stimulation of IFNγ and TNFα production in treated mice: (a) direct cytostatic/cytotoxic effects on tumor cells, (b) induction of antitumor activity of macrophages, and (c) inhibition of blood vessel formation in the tumor. Our studies demonstrate that combination tumor immunotherapy with IL-12 and TNFα may be more effective than single-cytokine treatment, and suggest possible mechanisms by which IL-12 and TNFα may exert potentiated therapeutic effects against locally growing tumors.


Photodiagnosis and Photodynamic Therapy | 2005

The influence of photodynamic therapy on the immune response

Dominika Nowis; Tomasz Stoklosa; Magdalena Legat; Tadeusz Issat; Marek Jakóbisiak; Jakub Gołąb

Photodynamic therapy (PDT) is a clinically approved therapeutic modality used for the management of several types of tumors as well as non-malignant diseases. Most of the effects of this treatment regimen result from direct action of singlet oxygen and reactive oxygen species. However, accumulating evidence indicates that antitumor effects are also mediated by indirect stimulation of inflammatory and immune responses. These responses include rapid local infiltration of tumors by neutrophils and macrophages accompanied by systemic release of inflammatory mediators. This early response can initiate and translate into a more precise immune reaction that involves activation of specific T lymphocytes that seem to be necessary for the ultimate control of residual tumor cells. Although still incompletely understood, PDT can not only activate but also suppress the immune response depending on several variables. This review summarizes the influence of PDT on the immune response and discusses its importance in the management of human diseases.

Collaboration


Dive into the Marek Jakóbisiak's collaboration.

Top Co-Authors

Avatar

Jakub Golab

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Witold Lasek

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Adam Giermasz

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Tomasz Stoklosa

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Dominika Nowis

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Radoslaw Zagozdzon

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Wojciech Feleszko

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Ahmad Jalili

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Marcin Makowski

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Kozar

Medical University of Warsaw

View shared research outputs
Researchain Logo
Decentralizing Knowledge