Marek Kuczma
Silesian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marek Kuczma.
Archive | 2009
Marek Kuczma; Attila Gilányi
Preliminaries.- Set Theory.- Topology.- Measure Theory.- Algebra.- Cauchys Functional Equation and Jensens Inequality.- Additive Functions and Convex Functions.- Elementary Properties of Convex Functions.- Continuous Convex Functions.- Inequalities.- Boundedness and Continuity of Convex Functions and Additive Functions.- The Classes A, B, ?.- Properties of Hamel Bases.- Further Properties of Additive Functions and Convex Functions.- Related Topics.- Related Equations.- Derivations and Automorphisms.- Convex Functions of Higher Orders.- Subadditive Functions.- Nearly Additive Functions and Nearly Convex Functions.- Extensions of Homomorphisms.
Aequationes Mathematicae | 1977
Marek Kuczma
(cf. [1], [2], [4}-[8]). The most general results in this direction were claimed by P. Fischer [1]. They read as follows ( yX denotes here the class of all functions [ : X ~ Y): (A) If (X, +) is a semigroup and (Y, +, .) is an integral domain, then in the class ,,ix the functional equations (1) and (2) are equivalent. (B) If (X, +) is a semigroup and (Y, +, .) is a commutative ring, then in the class yX the functional equations (1) and (2) are equivalent if and only if Y does not contain genuine nilpotent elements. However, Fischers proof of (A) is erroneous and the results are false. In this situation, the most general correct results concerning the equivalence of (1) and (2) are due to E. Vincze [7] and to H. Swiatak and M. Hossztl [5]. The first author proved the equivalence of (1) and (2) in the class yx , where (X, +) is an arbitrary semigroup, and (Y, +, .) is a suitable number field (and hence, in particular, is of characteristic zero). H. Swiatak and M. Hosszfi have dealt with a more general equation. Their result applied to equation (1) yields the equivalence of (1) and (2) in the class yX, where (X, +) is an arbitrary group and (Y, +, .) is an integral domain of characteristic zero; however, the existence of the multiplicative unit in Y and the commutativity of the + operation in Y were not needed.
Aequationes Mathematicae | 1976
Marek Kuczma; J. Smítal
DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
Results in Mathematics | 1991
János Aczél; Marek Kuczma
It is known (“mathematical folklore”) that, to every function defined on [1,2], there exists a solution of f(2x) = 2f(x) on ]0,∞[ of which the given function is a restriction to [1,2]. With a little care in the definition on [1,2], with still a lot of arbitrariness left, the resulting solution will be continuous, even C∞ on ]0,∞[ (a behaviour markedly different from that of the Cauchy equation f(x + y) = f(x) + f(y), which has f(x) = cx as only continuous solution on ]0,∞[, even though, with y = x, it degenerates into the above equation). If 0 is added to the domain and we choose the “arbitrary function” bounded on [1,2[, then the solution will even be continuous (from the right) at 0. However, if f is supposed to be differentiable at 0 (from the right), then f(x) = cx is the only solution on [0,∞[. p In this paper we present similar and further results concerning general, Cn (n ≤ ∞), analytic, locally monotonie or γ-th order convex solutions of the somewhat more general equation f(kx) = kγf(x) (k ≠ 1 a positive, γ a real constant), which seems to be of importance in meterology. Some of the results are not quite what one expects.
Archive | 1992
János Aczél; Marek Kuczma
We determine the general solutions of f(kx) = k γ f (x) (k ∈]0,∞[\{1}, γ ∈ ℝ are constants, x ∈]0,∞[variable), in particular those which are convex of order γ.
Journal of The Australian Mathematical Society | 1976
Marek Kuczma
We are concerned with the problem of the existence and uniqueness of regularly varying (in Karamatas sense) solutions ϕ of the linear functional equation in a right neighbourhood of x = 0. Under suitable conditions on the given functions f and h , the uniqueness of solutions depends essentially on whether the series Σh ∘ f 1 converges or diverges; here f i denotes the i -th functional iterate of f . The existence of solutions may be proved under further assumptions. The case of the more general linear functional equation may be reduced to that of equation (*).
Aequationes Mathematicae | 1989
Zygfryd Kominek; Marek Kuczma
SummaryLet (X, ℱ) be a topological space. For any functionf: D→[− ∞, ∞) (whereD ⊂ X), thelower hull mf:D →[− ∞, ∞) off is defined by
Archive | 1978
Marek Kuczma
Archive | 1978
Marek Kuczma
m_f (x) = m_{f\left| T \right.} (x) = \mathop {\sup \inf }\limits_{U \in T_x \in U \cap D} f(t),x \in D,
Archive | 1968
Marek Kuczma