Marek Piszczek
Military University of Technology in Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marek Piszczek.
international conference on microwaves, radar & wireless communications | 2012
Norbert Palka; Mieczyslaw Szustakowski; Marcin Kowalski; Tomasz Trzcinski; Radoslaw Ryniec; Marek Piszczek; Wiesław Ciurapiński; Marek Zyczkowski; Przemyslaw Zagrajek; Janusz Wrobel
We compared terahertz transmission spectra of explosives measured by means of Time Domain Spectroscopy (TDS) and an Optical Parametric Oscillator-based system (OPO). Reflection spectra of pure explosives were measured in reflection configuration by means of TDS in the range 0.3-2.5THz. We also analyzed influence of the surface roughness on reflectance and phase spectra of RDX-plastic based explosives. Next, we present a thermal phantom of human body working in THz range, which was developed for testing of THz cameras. We demonstrate the possibility of improvement of the quality of the image captured by a commercially available passive THz camera.
Photonics Letters of Poland | 2012
Marcin Kowalski; Norbert Palka; Marek Piszczek; Mieczyslaw Szustakowski
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
Millimetre Wave and Terahertz Sensors and Technology V | 2012
Marcin Kowalski; Marek Piszczek; Norbert Palka; Mieczyslaw Szustakowski
Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.
Photonics Letters of Poland | 2013
Marcin Kowalski; Marek Piszczek; Norbert Palka; Mieczyslaw Szustakowski
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
WIT Transactions on the Built Environment | 2015
Marcin Kowalski; Mariusz Kastek; Marek Piszczek; Marek Życzkowski; Mieczyslaw Szustakowski
Multispectral screening systems are becoming more popular because of a wide range of applications. Terahertz and infrared radiation have unique properties applicable to the field of surveillance and security systems. One of the most significant applications of multispectral screening systems is the prevention of terrorist attacks. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threat detection. There are many solutions to the problem; however, the most effective utilize multispectral surveillance imagers. We investigate the possibility of harmlessly detecting objects covered by various types of clothing in three spectrums – visible, infrared and terahertz. The terahertz range of electromagnetic radiation has considerable potential to detect hidden objects because it penetrates clothes. The infrared imagers are also very useful in searching for concealed objects because infrared cameras can detect small temperature differences on the surface of clothing. Radiation from these three ranges is harmless to humans. We present the detection methodology using infrared and terahertz imagers as complementary sensors to provide image data for a multispectral threat detection system. Possible ways of using the results are also presented.
International Congress on Optics and Optoelectronics | 2007
Marek Piszczek; Krzysztof Rutyna; Mieczyslaw Szustakowski
The optoelectronic observational system with active illumination is the innovatory method of images registration. The paper presents comparisons of passive and active images methods of registration. The realisation of framing space sector was graphically presented. The basic data were passed about worked out laboratory set up realizing images acquisition according to suggest active method. The results of conducted laboratory and ground tests were also presented. Received results shows on potentially large measuring and application possibilities methods of observation with active illumination; a) the spatial selection of observed scene elements, b) the registration and analysis high-speed processes c) the detection and identification of objects during observations in unfavourable lighting conditions and /or visibility. Authors of elaboration may hope, that devices basing on proposed method can become valuable measuring tool.
Proceedings of SPIE | 2014
Marcin Kowalski; Mariusz Kastek; Henryk Polakowski; Norbert Palka; Marek Piszczek; Mieczyslaw Szustakowski
Detection of concealed dangerous objects is a very demanding problem of public safety. So far, the problem of detecting objects hidden under clothing was considered only in the case of airports but it is becoming more and more important for public places like metro stations, and government buildings. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. On the other hand new infrared cameras offer sufficient parameters to detect objects covered with fabrics in some conditions, as well as high image quality and big pixel resolutions. The purpose of the studies is to investigate the possibilities of using various cameras operating in different spectral ranges for detection of concealed objects. In the article, we present the measurement setup consisting of medium wavelength infrared (MWIR), long wavelength infrared (LWIR), THz and visible cameras and the initial results of measurements with various types of clothing and test objects.
Photonics Letters of Poland | 2013
Marcin Kowalski; Mariusz Kastek; Norbert Palka; Henryk Polakowski; Mieczyslaw Szustakowski; Marek Piszczek
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
Archive | 2013
Marek Piszczek; Marcin Kowalski
The aim of this chapter is to discuss the properties of cameras using lasers as an illuminator during the image acquisition process. The basic types of ToF (time-of-flight) cameras are characterized, with the results of a PMD CamCube 3.0 ToF camera, and a laboratory laser photography device test presented. This will be applied in showing and analyzing the application capabilities of laser cameras. The unique qualities of ToF cameras allow them to be a valuable tool in the observation-measurement process, and they can be applied in outer space explorations and space navigation amongst other industries.
Millimetre Wave and Terahertz Sensors and Technology II | 2009
Wiesław Ciurapiński; Mieczyslaw Szustakowski; Norbert Palka; Marek Zyczkowski; Radoslaw Ryniec; Marek Piszczek; Pzemyslaw Zagrajek
Detection and recognition of covered explosive materials in the THz range can be devided into two areas - passive and active systems. Passive systems in the submilimeter (100÷300 GHz) as well as the terahertz (0.3÷3 THz) range base on thermal emissivity of exemined bodies. Such devices are designed to control persons and baggage in airports mainly at the temperature about 300K. Thermal emissivity of real bodies can be obtained from the Plancks formula for perfect black bodies and an emissvity coefficient. The emissivity coefficient of the real bodies can be determined from laboratory measurements of spectral transmission and reflection for the specific materials. However, values of the thermal emissivity detected in real cases depend strongly on surface of the material, direction of detection in relation to normal to the emitting surface, atmosphere and covering materials. These factors introduce attenuation of the emissivity what can cause camouflage of the characteristic features of individual materials and makes them difficult to identify. In this paper we present the value of the emissivity of hexogen (RDX) based on transmission measurements in FTIR spectrometer. The obtained emissivity is used to simulate intensity of radiation on an aperture.