Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marek Pruszynski is active.

Publication


Featured researches published by Marek Pruszynski.


Current Radiopharmaceuticals | 2011

Astatine-211: production and availability.

Michael R. Zalutsky; Marek Pruszynski

The 7.2-h half life radiohalogen (211)At offers many potential advantages for targeted α-particle therapy; however, its use for this purpose is constrained by its limited availability. Astatine-211 can be produced in reasonable yield from natural bismuth targets via the (209)Bi(α,2n)(211)At nuclear reaction utilizing straightforward methods. There is some debate as to the best incident α-particle energy for maximizing 211At production while minimizing production of (210)At, which is problematic because of its 138.4-day half life α-particle emitting daughter, (210)Po. The intrinsic cost for producing (211)At is reasonably modest and comparable to that of commercially available (123)I. The major impediment to (211)At availability is attributed to the need for a medium energy α-particle beam for its production. On the other hand, there are about 30 cyclotrons in the world that have the beam characteristics required for (211)At production.


Applied Radiation and Isotopes | 2010

Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application

Marek Pruszynski; Natalia Loktionova; D.V. Filosofov; Frank Rösch

The (44)Ti/(44)Sc (T(1/2)(44)Ti=60a) generator provides cyclotron-independent access to positron-emitting (44)Sc (T(1/2)=3.97d) for PET imaging. This work aims to post-elution processing of initial (44)Sc generator eluates in order to reduce its volume, HCl concentration and remove the oxalate anions. The on-line adsorption of (44)Sc on cationic resin AG 50W-X8 (200-400 mesh, H(+)-form) is achieved with >98% efficacy. Subsequently, the purified (44)Sc is desorbed by using 3ml of 0.25M ammonium acetate (pH=4.0). The post-processing takes 10min. The overall yield of the post-processing reached 90%, which is referred to the (44)Sc obtained from the (44)Ti/(44)Sc generator. In addition to the chemical purification, the content of (44)Ti breakthrough was further reduced by one order of magnitude. The 185MBq generator finally provides 150MBq of (44)Sc containing <10Bq of (44)Ti ready for labeling.


Nuclear Medicine and Biology | 2013

Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody

Marek Pruszynski; Eftychia Koumarianou; Ganesan Vaidyanathan; Hilde Revets; Nick Devoogdt; Tony Lahoutte; Michael R. Zalutsky

INTRODUCTION With a molecular weight an order of magnitude lower than antibodies but possessing comparable affinities, Nanobodies (Nbs) are attractive as targeting agents for cancer diagnosis and therapy. An anti-HER2 Nb could be utilized to determine HER2 status in breast cancer patients prior to trastuzumab treatment. This provided motivation for the generation of HER2-specific 5F7GGC Nb, its radioiodination and evaluation for targeting HER2 expressing tumors. METHODS 5F7GGC Nb was radioiodinated with ¹²⁵I using Iodogen and with ¹³¹I using the residualizing agent N(ɛ)-(3-[¹³¹I]iodobenzoyl)-Lys⁵-N(α)-maleimido-Gly¹-GEEEK ([¹³¹I]IB-Mal-D-GEEEK) used previously successfully with intact antibodies. Paired-label internalization assays using BT474M1 cells and tissue distribution experiments in athymic mice bearing BT474M1 xenografts were performed to compare the two labeled Nb preparations. RESULTS The radiochemical yields for Iodogen and [¹³¹I]IB-Mal-D-GEEEK labeling were 83.6±5.0% (n=10) and 59.6±9.4% (n=15), respectively. The immunoreactivity of labeled proteins was preserved as confirmed by in vitro and in vivo binding to tumor cells. Biodistribution studies showed that Nb radiolabeled using [¹³¹I]IB-Mal-D-GEEEK, compared with the directly labeled Nb, had a higher tumor uptake (4.65±0.61% ID/g vs. 2.92±0.24% ID/g at 8h), faster blood clearance, lower accumulation in non-target organs except kidneys, and as a result, higher concomitant tumor-to-blood and tumor-to-tissue ratios. CONCLUSIONS Taken together, these results demonstrate that 5F7GGC anti-HER2 Nb labeled with residualizing [¹³¹I]IB-Mal-D-GEEEK had better tumor targeting properties compared to the directly labeled Nb suggesting the potential utility of this Nb conjugate for SPECT (¹²⁹I) and PET imaging (¹²⁴I) of patients with HER2-expressing tumors.


Applied Radiation and Isotopes | 2012

Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc

Marek Pruszynski; Agnieszka Majkowska-Pilip; Natalia Loktionova; Elisabeth Eppard; Frank Roesch

The positron-emitting radionuclide (44)Sc with a half-life of 3.97 h and a β(+) branching of 94.3% is of potential interest for clinical PET. As so far it is available from a (44)Ti/(44)Sc generator in Mainz, where long-lived (44)Ti decays to no-carrier-added (nca) (44)Sc. The (44)Sc is a trivalent metal cation and should be suitable for complexation with many well established bifunctional chelators conjugated to peptides or other molecular targeting vectors. Thus, the aim of this work was to investigate the potential of (44)Sc for labeling of DOTA-conjugated peptides. DOTA-D-Phe(1)-Tyr(3)-octreotide (DOTATOC) was used as a model molecule to study and optimize labeling procedure. Reaction parameters such as buffer conditions, concentration of peptide, pH range, reaction temperature and time were optimized. Addition of 21 nmol of DOTATOC to (44)Sc in ammonium acetate buffer pH 4.0 provided labeling yields >98% within 25 min of heating in an oil-bath at 95°C. This time can be reduced to 3 min only by applying microwave supported heating. (44)Sc-DOTATOC was found to be stable in 0.9% NaCl, PBS pH 7.4, fetal calf and human serums, and also in the presence of competing metal cations (Fe(3+), Ca(2+), Cu(2+), Mg(2+)), as well as other ligand competitors, like EDTA and DTPA, even after almost 25 h incubation at 37°C. Present study shows that nca (44)Sc forms stable complexes with the macrocyclic ligand DOTA and that (44)Sc-DOTATOC and analog targeting vectors may be synthesized for further preclinical and clinical investigations.


The Journal of Nuclear Medicine | 2014

Improved Tumor Targeting of Anti-HER2 Nanobody Through N-Succinimidyl 4-Guanidinomethyl-3-Iodobenzoate Radiolabeling

Marek Pruszynski; Eftychia Koumarianou; Ganesan Vaidyanathan; Hilde Revets; Nick Devoogdt; Tony Lahoutte; H. Kim Lyerly; Michael R. Zalutsky

Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain–only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-125/131I-iodobenzoate (*I-SGMIB). Methods: The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with Nε-(3-*I-iodobenzoyl)-Lys5-Nα-maleimido-Gly1-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN (125I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. Results: *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated 125I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor–to–normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs and kidneys, for which the values were 10.4 ± 4.5 and 5.2 ± 1.5, respectively. Conclusion: Labeling anti-HER2 Nanobody 5F7GGC with *I-SGMIB yields a promising new conjugate for targeting HER2-expressing malignancies. Further research is needed to determine the potential utility of *I-SGMIB-5F7GGC labeled with 124I, 123I, and 131I for PET and SPECT imaging and for targeted radiotherapy, respectively.


Bioconjugate Chemistry | 2008

Preparation of Rh[16aneS4-diol](211)At and Ir[16aneS4-diol](211)At complexes as potential precursors for astatine radiopharmaceuticals. Part I: Synthesis.

Marek Pruszynski; Aleksander Bilewicz; Michael R. Zalutsky

The goal of this study was to evaluate a new approach that can be applied for labeling biomolecules with (211)At. Many astatine compounds that have been synthesized are unstable in vivo, providing motivation for seeking different (211)At labeling strategies. The approach evaluated in this study was to attach astatide anions to soft metal cations, which are also complexed by a bifunctional ligand. Ultimately, this complex could in principle be subsequently conjugated to a biomolecule with the proper selection of ligand functionality. We report here the attachment of (211)At(-) and *I(-) (*I = (131)I or (125)I) anions to the soft metal cations Rh(III) and Ir(III), which are complexed by the 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (16aneS4-diol) ligand. Radioactive *I(-) anions were used for preliminary studies directed at the optimization of reaction conditions and to provide a baseline for comparison of results with (211)At. Four complexes Rh[16aneS4-diol]*I/(211)At and Ir[16aneS4-diol]*I/(211)At were synthesized in high yield in a one-step procedure, and the products were characterized mainly by paper electrophoresis and reversed-phase HPLC. The influences of time and temperature of heating and concentrations of metal cations and sulfur ligand 16aneS4-diol, as well as pH on the reaction yields were determined. Yields of about 80% were obtained when the quantities of Rh(III) or Ir(III) cations and 16aneS4-diol ligand in the solutions were 62.5 nmol and 250 nmol, respectively, and the pH ranged 3.0-4.0. Syntheses required heating for 1-1.5 h at 75-80 degrees C. The influence of microwave heating on the time and completeness of the complexation reaction was evaluated and compared with the conventional method of heating in an oil bath. Microwave synthesis accelerates reactions significantly. With microwave heating, yields of about 75% for Rh[16aneS4-diol](131)I and Ir[16aneS4-diol](131)I complexes were obtained after only 20 min exposure of the reaction mixtures to microwave radiation. In conclusion, this study has shown that it is possible to attach an astatide anion to soft metal cations in a simple and fast one-step procedure, with high yields. These complexes will be evaluated as reagents for labeling biomolecules.


Nuclear Medicine and Biology | 2014

Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter – A potential Auger electron emitting EGFR-targeted radiotherapeutic

Eftychia Koumarianou; Tatiana A. Slastnikova; Marek Pruszynski; Andrey A. Rosenkranz; Ganesan Vaidyanathan; Alexander S. Sobolev; Michael R. Zalutsky

INTRODUCTION Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga. METHODS EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed. RESULTS (67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga. CONCLUSION These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.


Clinical Cancer Research | 2017

131I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment

Matthias D'Huyvetter; Jens De Vos; Catarina Xavier; Marek Pruszynski; Yann G. J. Sterckx; Sam Massa; Geert Raes; Vicky Caveliers; Michael R. Zalutsky; Tony Lahoutte; Nick Devoogdt

Purpose: Camelid single-domain antibody-fragments (sdAb) have beneficial pharmacokinetic properties, and those targeted to HER2 can be used for imaging of HER2-overexpressing cancer. Labeled with a therapeutic radionuclide, they may be used for HER2-targeted therapy. Here, we describe the generation of a 131I-labeled sdAb as a theranostic drug to treat HER2-overexpressing cancer. Experimental Design: Anti-HER2 sdAb 2Rs15d was labeled with 131I using [131I]SGMIB and evaluated in vitro. Biodistribution was evaluated in two HER2+ murine xenograft models by micro-SPECT/CT imaging and at necropsy, and under challenge with trastuzumab and pertuzumab. The therapeutic potential of [131I]SGMIB-2Rs15d was investigated in two HER2+ tumor mouse models. A single-dose toxicity study was performed in mice using unlabeled [127I]SGMIB-sdAb at 1.4 mg/kg. The structure of the 2Rs15d–HER2 complex was determined by X-ray crystallography. Results: [131I]SGMIB-2Rs15d bound specifically to HER2+ cells (Kd = 4.74 ± 0.39 nmol/L). High and specific tumor uptake was observed in both BT474/M1 and SKOV-3 tumor xenografted mice and surpassed kidney levels by 3 hours. Extremely low uptake values were observed in other normal tissues at all time points. The crystal structure revealed that 2Rs15d recognizes HER2 Domain 1, consistent with the lack of competition with trastuzumab and pertuzumab observed in vivo. [131I]SGMIB-2Rs15d alone, or in combination with trastuzumab, extended median survival significantly. No toxicity was observed after injecting [127I]SGMIB-2Rs15d. Conclusions: These findings demonstrate the theranostic potential of [131I]SGMIB-2Rs15d. An initial scan using low radioactive [*I]SGMIB-2Rs15d allows patient selection and dosimetry calculations for subsequent therapeutic [131I]SGMIB-2Rs15d and could thereby impact therapy outcome on HER2+ breast cancer patients. Clin Cancer Res; 23(21); 6616–28. ©2017 AACR.


Nuclear Medicine and Biology | 2014

N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: Influence of isomeric substitution on radiolabeling and target cell residualization

Jaeyeon Choi; Ganesan Vaidyanathan; Eftychia Koumarianou; Darryl McDougald; Marek Pruszynski; Takuya Osada; Tony Lahoutte; H. Kim Lyerly; Michael R. Zalutsky

INTRODUCTION N-succinimidyl 4-guanidinomethyl-3-[(*)I]iodobenzoate ([(*)I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [(131)I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[(131)I]iodobenzoate (iso-[(131)I]SGMIB) wherein this bulky group was moved from ortho to meta position. METHODS Boc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors - trastuzumab (Tras) and a nanobody 5F7 (Nb) - were labeled using iso-[(*)I]SGMIB and [(*)I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed. RESULTS When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[(131)I]SGMIB were significantly higher than those for Boc2-[(131)I]SGMIB (70.7±2.0% vs 56.5±5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[(131)I]SGMIB than with [(131)I]SGMIB (Nb, 33.1±7.1% vs 28.9±13.0%; Tras, 45.1±4.5% vs 34.8±10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5F7 Nb indicated similar residualizing capacity over 6h; however, at 24h, radioactivity retained intracellularly for iso-[(131)I]SGMIB-Nb was lower than for [(125)I]SGMIB-Nb (46.4±1.3% vs 56.5±2.5%); similar results were obtained using Tras. Likewise, a paired-label biodistribution of Tras labeled using iso-[(125)I]SGMIB and [(131)I]SGMIB indicated an up to 22% tumor uptake advantage at later time points for [(131)I]SGMIB-Tras. CONCLUSION Given the higher labeling efficiency obtained with iso-SGMIB, this residualizing agent might be of value for use with shorter half-life radiohalogens.


Nuclear Medicine and Biology | 2015

Stability and in vivo behavior of Rh[16aneS4-diol]211At complex: A potential precursor for astatine radiopharmaceuticals

Marek Pruszynski; Monika Łyczko; Aleksander Bilewicz; Michael R. Zalutsky

INTRODUCTION The heavy halogen (211)At is of great interest for targeted radiotherapy because it decays by the emission of short-range, high-energy α-particles. However, many astatine compounds that have been synthesized are unstable in vivo, providing motivation for seeking other (211)At labeling strategies. One relatively unexplored approach is to utilize prosthetic groups based on astatinated rhodium (III) complex stabilized with a tetrathioether macrocyclic ligand - Rh[16aneS(4)-diol](211)At. The purpose of the current study was to evaluate the in vitro and in vivo stability of this complex in comparison to its iodine analog - Rh[16aneS(4)-diol](131)I. METHODS Rh[16aneS(4)-diol](211)At and Rh[16aneS(4)-diol](131)I complexes were synthesized and purified by HPLC. The stability of both complexes was evaluated in vitro by incubation in phosphate-buffered saline (PBS) and human serum at different temperatures. The in vivo behavior of the two radiohalogenated complexes was assessed by a paired-label biodistribution study in normal Balb/c mice. RESULTS Both complexes were synthesized in high yield and purity. Almost no degradation was observed for Rh[16aneS(4)-diol](131)I in PBS over a 72 h incubation. The astatinated analog exhibited good stability in PBS over 14 h. A slow decline in the percentage of intact complex was observed for both tracers in human serum. In the biodistribution study, retention of (211)At in most tissues was higher than that of (131)I at all time points, especially in spleen and lungs. Renal clearance of Rh[16aneS(4)-diol](211)At and Rh[16aneS(4)-diol](131)I predominated, with 84.1 ± 2.3% and 94.6 ± 0.9% of injected dose excreted via the urine at 4 h. CONCLUSIONS The Rh[16aneS(4)-diol](211)At complex might be useful for constructing prosthetic groups for the astatination of biomolecules and further studies are planned to evaluate this possibility.

Collaboration


Dive into the Marek Pruszynski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Lahoutte

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Devoogdt

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge