Marek Wagner
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marek Wagner.
Angiogenesis | 2012
Marek Wagner; Rolf Bjerkvig; Helge Wiig; Juan M. Melero-Martin; Ruei-Zeng Lin; Michael Klagsbrun; Andrew C. Dudley
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b+ macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to over-express ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b+ macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages.
Journal of Clinical Investigation | 2016
Amanda W. Lund; Marek Wagner; Manuel Fankhauser; Eli Sihn Samdal Steinskog; Maria A. S. Broggi; Stefani Spranger; Thomas F. Gajewski; Kari Alitalo; Hans Petter Eikesdal; Helge Wiig; Melody A. Swartz
Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment.
The FASEB Journal | 2015
Anne Burtey; Marek Wagner; Erlend Hodneland; Kai Ove Skaftnesmo; Julia Schoelermann; Ivan Rios Mondragon; Heidi Espedal; Anna Golebiewska; Simone P. Niclou; Rolf Bjerkvig; Tanja Kögel; Hans-Hermann Gerdes
Intercellular communication between cancer cells, especially between cancer and stromal cells, plays an important role in disease progression. We examined the intercellular transfer of organelles and proteins in vitro and in vivo and the role of tunneling nanotubes (TNTs) in this process. TNTs are membrane bridges that facilitate intercellular transfer of organelles of unclear origin. Using 3‐dimensional quantitative and qualitative confocal microscopy, we showed that TNTs contain green fluorescent protein (GFP)‐early endosome antigen (EEA) 1, GFP Rab5, GFP Rab11, GFP Rab8, transferrin (Tf), and Tf receptor (Tf‐R) fused to mCherry (Tf‐RmCherry). Tf‐RmCherry was transferred between cancer cells by a contact‐dependent but secretion‐independent mechanism. Live cell imaging showed TNT formation preceding the transfer of Tf‐RmCherry and involving the function of the small guanosine triphosphatase (GTPase) Rab8, which colocalized with Tf‐RmCherry in the TNTs and was cotransferred to acceptor cells. Tf‐RmCherry was transferred from cancer cells to fibroblasts, a noteworthy finding that suggests that this process occurs between tumor and stromal cells in vivo. We strengthened this hypothesis in a xenograft model of breast cancer using enhanced (e)GFP‐expressing mice. Tf‐RmCherry transferred from tumor to stromal cells and this process correlated with an increased opposite transfer of eGFP from stromal to tumor cells, together pointing toward complex intercellular communication at the tumor site.—Burtey, A., Wagner, M., Hodneland, E., Skaftnesmo, K. O., Schoelermann, J., Mondragon, I. R., Espedal, H., Golebiewska, A., Niclou, S. P., Bjerkvig, R., Kögel, T., Gerdes, H.‐H. Intercellular transfer of transferrin receptor by a contact‐, Rab8‐dependent mechanism involving tunneling nanotubes. FASEB J. 29, 4695‐4712 (2015). www.fasebj.org
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Carl Erik Markhus; Tine V. Karlsen; Marek Wagner; Øyvind Sverre Svendsen; Olav Tenstad; Kari Alitalo; Helge Wiig
Objective—The pathophysiology of lymphedema is incompletely understood. We asked how transcapillary fluid balance parameters and lymph flow are affected in a transgenic mouse model of primary lymphedema, which due to an inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling lacks dermal lymphatics, and whether protein accumulation in the interstitium occurring in lymphedema results in inflammation. Methods and Results—As estimated using a new optical-imaging technique, we found that this signaling defect resulted in lymph drainage in hind limb skin of K14-VEGFR-3-Ig mice that was 34% of the corresponding value in wild-type. The interstitial fluid pressure and tissue fluid volumes were significantly increased in the areas of visible swelling only, whereas the colloid osmotic pressure in plasma, and thus the colloid osmotic pressure gradient, was reduced compared to wild-type mice. An acute volume load resulted in an exaggerated interstitial fluid pressure response in transgenic mice. There was no accumulation of collagen or lipid in skin, suggesting that chronic edema presented in the K14-VEGFR-3-Ig mouse was not sufficient to induce changes in tissue composition. Proinflammatory cytokines (interleukin-2, interleukin-6, interleukin-12) in subcutaneous interstitial fluid and macrophage infiltration in skin of the paw were lower, whereas the monocyte/macrophage cell fraction in blood and spleen was higher in transgenic compared with wild-type mice. Conclusion—Our data suggest that a high interstitial protein concentration and longstanding edema is not sufficient to induce fibrosis and inflammation characteristic for the human condition and may have implications for our understanding of the pathophysiology of this condition.
Expert Opinion on Therapeutic Targets | 2013
Tor-Christian Aase Johannessen; Marek Wagner; Oddbjørn Straume; Rolf Bjerkvig; Hans Petter Eikesdal
Introduction: Tumor-associated angiogenesis is one of the essential hallmarks underlying cancer development and metastasis. Anti-angiogenic agents accordingly aim to restrain cancer progression by blocking the formation of new vessels, improving the delivery of chemotherapeutic agents to the tumor site and reducing the shedding of metastatic cells into the circulation. This review article addresses some key issues in the use of angiogenesis inhibitors in cancer. Areas covered: The authors review the complex interactions between cell signaling pathways involved in tumor angiogenesis, and focus in particular on the molecular mechanisms that may induce resistance to angiogenesis inhibitors. They will also discuss some novel therapeutic strategies evolving within anti-angiogenic therapy such as the targeting of VEGFR-3, endothelial integrins and hepatocyte growth factor-MET signaling. Expert opinion: Although anti-angiogenic therapy is targeted at the non-malignant part of the tumor, the intricate network of growth promoting signaling pathways and in particular the redundancy when single pathways are targeted in endothelial cells represents a major therapeutic obstacle. A key challenge will be to develop more efficient inhibitors, combined with an individualized approach based on each tumors own endothelial signaling profile. Furthermore, reliable biomarkers which pinpoint those patients that will benefit from anti-angiogenic therapy need to be identified.
Frontiers in Oncology | 2015
Marek Wagner; Helge Wiig
The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase representing the tissue microenvironment. In the present review, we focus on the interstitial fluid phase of solid tumors, the tumor interstitial fluid (TIF), i.e., the fluid bathing the tumor and stroma cells, also including immune cells. This is a component of the internal milieu of a solid tumor that has attracted regained attention. Access to this space may provide important insight into tumor development and therapy response. TIF is formed by transcapillary filtration, and since this fluid is not readily available we discuss available techniques for TIF isolation, results from subsequent characterization and implications of recent findings with respect to fluid filtration and uptake of macromolecular therapeutic agents. There appear to be local gradients in signaling substances from neoplastic tissue to plasma that may provide new understanding of tumor biology. The development of sensitive proteomic technologies has made TIF a valuable source for tumor specific proteins and biomarker candidates. Potential biomarkers will appear locally in high concentrations in tumors and may eventually be found diluted in the plasma. Access to TIF that reliably reflects the local tumor microenvironment enables identification of substances that can be used in early detection and monitoring of disease.
Expert Opinion on Therapeutic Targets | 2015
Marek Wagner; Eli Sihn Samdal Steinskog; Helge Wiig
Introduction: Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Areas covered: Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. Expert opinion: The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.
Adipocyte | 2013
Marek Wagner; Rolf Bjerkvig; Helge Wiig; Andrew C. Dudley
Most tumors are typified by a chronic, unresolved inflammatory response that potentiates angiogenesis and therefore enables tumor progression. We have determined that dysfunctional tumor-associated adipocytes contribute to tumor-associated inflammation. In three tumor models, tumor-associated adipose tissue was characterized by thin and fragile adipocyte membranes, necrosis, robust expression of the pro-inflammatory factor HMGB1, and loss of the lipid storage mediator, perilipin-1. By transmission electron microscopy, macrophages in tumor-associated adipose tissue contained lipid droplets and resembled foam cells, which are commonly observed in inflamed tissues. In vitro co-culture studies showed that tumor-associated adipose tissue conditioned-medium stimulated monocyte-to-macrophage differentiation, adhesion, spreading, and lipid uptake. Compared with normal adipose tissue, tumor-associated adipose tissue secreted 3-fold higher levels of IL-6 and IL-6 was sufficient to stimulate macrophage differentiation and adhesion. These results suggest that, in tumors, loss of adipocyte specification, necrosis, and scavenging of adipocyte debris directly activates macrophages and contributes to tumor-associated inflammation. Thus, adipocyte dysfunction may facilitate tumor progression, especially in tumors closely aligned with adipose tissue, in particular, breast cancer.
Adipocyte | 2013
Marek Wagner; Andrew C. Dudley
In tumors, cross talk between malignant and non-malignant cells (stroma) influences tumor growth, angiogenesis and metastasis. Stromal cells in tumors typically include vascular cells, fibroblasts and a heterogeneous population of inflammatory cells. Adipocytes may also be present. Adipose tissue is perhaps the least studied stromal cell “compartment” despite the fact that some tumors, particularly breast tumors, grow in close proximity to or physically interact with adipocytes. Apart from adipocytes and numerous blood vessels, adipose tissue harbors macrophages, which increase in proportion to adipose tissue mass. While circulating or bone marrow-derived macrophages play a well-defined role in tumor growth, it is less understood how resident adipose tissue-associated macrophages contribute to tumor progression. Here, we will review the role of adipose tissue in tumor growth and angiogenesis with emphasis on the specific functions of adipose tissue macrophages in these processes.
PLOS ONE | 2013
Krishna M. Talasila; Narve Brekkå; Kjersti Mangseth; Daniel Stieber; Lasse Evensen; Gro Vatne Røsland; Anja Torsvik; Marek Wagner; Simone P. Niclou; Rupavathana Mahesparan; Olav Karsten Vintermyr; Rolf Bjerkvig; Janice M. Nigro; Hrvoje Miletic
Two of the signature genetic events that occur in human gliomas, EGFR amplification and IDH mutation, are poorly represented in experimental models in vitro. EGFR amplification, for example, occurs in 40 to 50% of GBM, and yet, EGFR amplification is rarely preserved in cell cultures derived from human tumors. To analyze the fate of EGFR amplified and IDH mutated cells in culture, we followed the development over time of cultures derived from human xenografts in nude rats enriched for tumor cells with EGFR amplification and of cultures derived from patient samples with IDH mutations, in serum monolayer and spheroid suspension culture, under serum and serum free conditions. We observed under serum monolayer conditions, that nestin positive or nestin and SMA double positive rat stromal cells outgrew EGFR amplified tumor cells, while serum spheroid cultures preserved tumor cells with EGFR amplification. Serum free suspension culture exhibited a more variable cell composition in that the resultant cell populations were either predominantly nestin/SOX2 co-expressing rat stromal cells or human tumor cells, or a mixture of both. The selection for nestin/SMA positive stromal cells under serum monolayer conditions was also consistently observed in human oligodendrogliomas and oligoastrocytomas with IDH mutations. Our results highlight for the first time that serum monolayer conditions can select for stromal cells instead of tumor cells in certain brain tumor subtypes. This result has an important impact on the establishment of new tumor cell cultures from brain tumors and raises the question of the proper conditions for the growth of the tumor cell populations of interest.