Marelize Swart
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marelize Swart.
Pharmacogenetics and Genomics | 2013
Marelize Swart; Michelle Skelton; Yuan Ren; Peter G. Smith; Simbabrashe Takuva; Collet Dandara
Introduction Efavirenz is primarily metabolized by CYP2B6, with a minor contribution from CYP1A2, CYP2A6, CYP3A4 and CYP3A5. Genetic variability in these genes contributes towards differences in plasma efavirenz concentration, which ultimately leads to either development of adverse drug events or emergence of virus resistance. However, the clinical utility or validity of introducing genotype-assisted dosing is not known. The aim of this study was therefore to evaluate the effects of 14 single-nucleotide polymorphisms (SNPs) in five drug-metabolizing enzyme genes on steady-state plasma efavirenz levels in South African HIV/AIDS patients as well as their clinical validity. Methods HIV/AIDS patients were recruited from Themba Lethu Clinic, at Helen Joseph Hospital, Johannesburg. Blood samples for plasma drug levels and DNA extraction were obtained from each participant. PCR/RFLP and SNaPshot genotyping were used for SNPs in CYP1A2, CYP2A6, CYP2B6, CYP3A4 and CYP3A5 among 464 Bantu-speaking South Africans. Plasma efavirenz concentrations were measured using LC/MS/MS. Genotypes and plasma efavirenz levels were used to calculate predictive values. Multivariate analysis was used to select the minimal set of SNPs with significant clinical validity. Results Qualitative and quantitative differences in allele frequencies were observed when comparing South Africans with African, Caucasian and Asian populations. CYP2B6 516T and 785G (*6) and CYP2B6 983C (*18) alleles were significantly associated with high plasma efavirenz levels. CYP2B6 A-G-A-C-C and A-T-G-T-C haplotypes (with respect to CYP2B6 136A>G; CYP2B6 516G>T; CYP2B6 785A>G; CYP2B6 983T>C; and CYP2B6 1459C>T) were associated with higher levels of efavirenz, whereas G-G-A-T-C and A-G-A-T-C haplotypes showed significantly lower levels of efavirenz. The CYP2B6*1/*6 genotype was significantly associated with an increased risk of loss to follow-up. The sensitivity, specificity and positive predictive values for the CYP2B6*6/*6 genotype in predicting efavirenz levels above 4 µg/ml were 46, 97 and 88%, respectively. However, these values improved to 49, 100 and 100%, respectively, when either the CYP1A2 −163A (*1F) allele or the NR1I3 8784C/C genotype was present. Conclusion Screening for CYP2B6 516G>T SNP has a high specificity and positive predictive value for efavirenz levels above 4 µg/ml and could be used in deciding on efavirenz dosage among individuals homozygous for this variant, which could lead to better precision medication.
BMC Medical Genetics | 2012
Marelize Swart; Heather Whitehorn; Yuan Ren; Peter J. Smith; Rajkumar Ramesar; Collet Dandara
BackgroundThis study investigated variation in NR1I2 and NR1I3 and its effect on plasma efavirenz levels in HIV/AIDS patients. Variability in plasma drug levels has largely led research on identifying causative variants in drug metabolising enzyme (DME) genes, with little focus on the nuclear receptor genes NR1I2 and NR1I3, coding for PXR and CAR, respectively, that are involved in regulating DMEs.Methods464 Bantu-speaking South Africans comprising of HIV/AIDS patients on efavirenz-based treatment (n=301) and 163 healthy subjects were genotyped for 6 SNPs in NR1I2 and NR1I3. 32 of the 301 patients had their DNA binding domains (DBDs) in NR1I2 and NR1I3 sequenced.ResultsSignificantly decreased efavirenz plasma concentrations were observed in patients carrying the NR1I3 rs3003596C/C and T/C genotypes (P=0.015 and P=0.010, respectively). Sequencing resulted in the discovery of a further 13 SNPs, 3 of which are novel variants in the DBD of NR1I2. There were significant differences in the distribution of NR1I2 and NR1I3 SNPs between South Africans when compared to Caucasian, Asian and Yoruba population groups.ConclusionFor the realisation of personalised medicine, PXR and CAR genetic variation should be taken into consideration because of their involvement in the regulation of DMEs.
Expert Opinion on Drug Metabolism & Toxicology | 2014
Collet Dandara; Marelize Swart; Bafokeng Mpeta; Ambroise Wonkam; Collen Masimirembwa
Introduction: Africa harbors a disproportionate burden of disease when taking into account the triple challenge caused by HIV/AIDS, tuberculosis (TB) and malaria, against a backdrop of an increasing burden of noncommunicable diseases. More than 80% of therapeutic drugs used in the management of these diseases/conditions are metabolized by CYP enzymes that exhibit genetic polymorphisms. Areas covered: There is variability in the expression and activities of CYPs resulting in interindividual differences in the response to standard doses of therapeutic drugs, due to genetic polymorphisms, which exhibit both quantitative and qualitative differences between racial and between ethnic groups. The review aims to evaluate the implications of the genetic variation in CYPs on the public health of Africans. The CYPs reviewed here metabolize most of the commonly used therapeutic drugs and include CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 and 3A5. Allele frequencies are compared between African ethnic groups and among populations of African, Asian and European origin. Data are obtained from our own studies and literature. Expert opinion: The variability in the pattern of genetic variation between populations translates into differences in drug response. Understanding CYP variability improves rational drug use and has public health significance.
Frontiers in Genetics | 2012
Marelize Swart; Yuan-Yuan Ren; Peter J. Smith; Collet Dandara
The ABCB1 gene encodes P-glycoprotein, an ATP-dependent drug efflux pump, which is responsible for drug transport across extra- and intra-cellular membranes. The variability in the expression of ABCB1 may contribute to variable plasma efavirenz concentration which results in variability in the levels of suppression of the human immunodeficiency syndrome virus (HIV). The aim of the study was to evaluate the role of polymorphisms in ABCB1 gene on plasma efavirenz levels and treatment response in the form of change in viral load and CD-4 cell count in HIV/AIDS patients receiving efavirenz-containing highly active antiretroviral treatment regimens. Two hundred and eighty-two HIV-infected patients were recruited from Themba Lethu Clinic in Johannesburg and plasma efavirenz drug concentration levels were measured using LC-MS/MS. SNaPshot was used to genotype five known ABCB1 single nucleotide polymorphisms (SNPs). Genotype-phenotype correlations were computed. The ABCB1 4036A/G and 4036G/G genotypes were significantly associated with low plasma efavirenz concentrations (P = 0.0236), while the ABCB1 1236C/T and 1236T/T genotypes were associated with high efavirenz concentrations (P = 0.0282). A haplotype ABCB1 T-G-T-A is reported that is associated with significantly increased plasma efavirenz levels. This is the first report on 61A>G, 2677G>T/A, and 4036A>G SNPs in the South African population. ABCB1 plays a role in determining the plasma concentrations of efavirenz and should be taken into account in future design of assays for genotype-based dosing of efavirenz-containing regimens.
Frontiers in Genetics | 2014
Marelize Swart; Collet Dandara
Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolizing enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences. Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment.
Current Pharmacogenomics and Personalized Medicine | 2012
Marelize Swart; Michelle Skelton; Ambroise Wonkam; Luke Kannemeyer; Nyasha Chin’ombe; Collet Dandara
The health burden resulting from parasitic and infectious diseases such as HIV/AIDS, tuberculosis and malaria, requires that available medication and limited healthcare resources be used optimally. However, due to co-morbidities, patients are often exposed to many drugs concurrently. Most of these drugs are metabolised by similar enzymes which are polymorphic, thus, drug-drug interactions are a constant problem. Quantitative and qualitative differences in drug metabolizing enzyme variants in different populations result in differential drug response. This study investigated the baseline frequencies of genetic variants in key drug metabolizing cytochrome P450 enzymes, CYP1A2, CYP2A6, CYP2B6, CYP3A4 and CYP3A5 in two previously understudied Bantu-speaking populations from Cameroon (N=72) and South Africa (N=163) using PCR-RFLP. Genotype frequencies for CYP1A2 C-163A and CYP3A4 A-392G single nucleotide polymorphisms (SNPs) were significantly different between these two populations (P=0.0004 and 0.0079, respectively). Significant differences were also observed when the two Bantu-speaking populations were each compared to other African populations as well as Caucasian and Asian populations. Importantly, correspondence analysis showed that the two Bantu-speaking African populations were separated from each other and from other African populations based on CYP1A2 C-163A and CYP2A6 G1093A SNPs. The data show that drugs that are substrates for these polymorphic enzymes are likely to have different response profiles among the Bantu-speaking populations and populations of either Caucasian or Asian origin, further emphasizing the need to genetically characterise as many African populations in order to realize personalised medicine. These data further emphasize that linguistically related Bantu-speaking populations are not necessarily genetically homogenous. Finally, we note that our observations also inform future pharmacogenetic- guided rational therapeutic drug monitoring to prevent or minimize the risk for adverse drug-drug interactions mediated by these genetically polymorphic pathways.
Frontiers in Genetics | 2016
Marelize Swart; Jonathan Evans; Michelle Skelton; Sandra Castel; Lubbe Wiesner; Peter J. Smith; Collet Dandara
Introduction: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1–4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3′-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3′-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs. Methods: SNPs in CYP1A2, CYP2B6, UGT2B7, and NR1I2 (PXR) were selected for genotyping among 222 Bantu-speaking South African HIV-infected patients receiving EFV-containing HAART. This study is a continuation of earlier pharmacogenetics studies emphasizing the role of genetic variation in the 3′-UTR of genes which products are either pharmacokinetic or pharmacodynamic targets of EFV. Results: Despite evaluating thirty SNPs, CYP2B6 c.516G>T and c.983T>C SNPs remain the most prominent predictors of EFV plasma concentration. Conclusion: We have shown that CYP2B6 c.516G>T and c.983T>C SNPs are the most important predictors of EFV plasma concentration after taking into account all other SNPs, including genetic variation in the 3′-UTR, and variables affecting EFV metabolism.
Antiviral Research | 2014
Emile Bienvenu; Marelize Swart; Collet Dandara; Michael Ashton
Efavirenz (EFV) exhibits interindividual pharmacokinetic variability caused by differences in cytochrome P450 (CYP) expression. Most tuberculosis (TB) drugs interact with the CYP metabolizing enzymes, while the clinical validity of genotyping in predicting EFV plasma levels in Rwandan subjects is not known. We investigated in patients co-infected with human immunodeficiency virus (HIV) and TB recruited in Rwanda the effects of 10 SNPs in five drug-metabolizing enzymes on EFV plasma levels and treatment response when patients are treated with EFV-containing therapy alone (n=28) and when combined with rifampicin-based TB treatment (n=62), and the validity of genotyping for CYP2B6 single nucleotide polymorphisms in predicting supra-therapeutic EFV levels. There was a significant difference between CYP1A2 -739T/G and T/T genotypes when patients were treated with EFV-containing therapy combined with rifampicin-based TB treatment, but not when EFV-containing therapy was alone. CYP2B6 516T/T genotype was associated with high EFV levels compared to other CYP2B6 516G>T genotypes in the presence and in the absence of rifampicin-based TB treatment. Predictive factors of EFV plasma levels in the presence of rifampicin-based TB treatment were CYP2A6 1093G>A, CYP2B6 516G>T, and CYP2B6 983T>C accounting for 27%, 43%, and 29% of the total variance in EFV levels, respectively. There was a high positive predictive value (PPV) (100%) for CYP2B6 516T/T and 983T/T genotypes in predicting EFV plasma levels above the therapeutic range, but this PPV decreased in the presence of rifampicin-based TB treatment. Rifampicin-based TB treatment was also shown to affect EFV plasma levels significantly, but did not affect the significant reduction of HIV-RNA copies. These results indicate that genotyping for CYP2B6 SNPs could be used as a tool in predicting supra-therapeutic EFV plasma levels, which could minimize adverse drug events.
Omics A Journal of Integrative Biology | 2015
Jonathan Evans; Marelize Swart; Nyarai Soko; Ambroise Wonkam; Farah Huzair; Collet Dandara
The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0.39) and Caucasians (0.31). The g.15582C/T and T/T genotypes were associated with significantly reduced EFV levels (p=0.006). This article additionally presents the policy relevance of the PGX global health diagnostics and therefore, collectively makes an original interdisciplinary contribution to the field of integrative biology and personalized medicine in developing world. Such studies are, in fact, broadly important because resource-constrained regions exist not only in developing world but also in major geographical parts of the G20 nations and the developed countries.
Omics A Journal of Integrative Biology | 2014
Kudakwashe Mhandire; Gavin Pharo; Gwendolene Q. Kandawasvika; Kerina Duri; Marelize Swart; Babill Stray-Pedersen; Collet Dandara
Mannose binding lectin (MBL) is a pathogen pattern recognition protein involved in antimicrobial activities. Variation in MBL2 gene has been extensively implicated in differential outcomes of infectious diseases in studies conducted outside Africa, but virtually very little is known on the role of this candidate gene in the African continent. We investigated human genetic variations in MBL2 in a Zimbabwean pediatric population and their putative associations with HIV infection in perinatally exposed children. One hundred and four children aged 7 to 9 years comprising 68 perinatally exposed to HIV (32 who were born infected and 36 who were uninfected) and 36 unexposed controls were recruited. DNA samples were genotyped for MBL2 polymorphisms using PCR-RFLP and sequencing. HIV infected children had markedly variable and significantly lower mean height (p=0.03) and weight (p=0.005) when compared to the uninfected children. Using all samples, frequencies for MBL2 genetic variants for the Zimbabwean population were calculated. Twelve single nucleotide polymorphisms were observed and minor alleles occurred with the following frequencies: -550C>G (G: 0.02), -435G>A (A: 0.08), -428A>C (C: 0.39), -394A>G (A: 0.39), -328AGAGAA ins/del (AGAGAA ins: 0.44), -245G>A (A: 0.05), -221C>G (C: 0.12), -111A>T (T: 0.10), -70C>T (C: 0.46), +4C>T (C: 0.45), novel -595G>A (A: 0.02), and 170G>A (0.24). We found that the MBL2 +4T variant displayed a trend for association with reduced risk of HIV transmission from mother-to-child but the remaining vast majority of the genetic markers did not show a significant association. We conclude (1) the MBL2 gene is highly polymorphic in the Zimbabwean population, and (2) MBL2 genetic variation does not appear to play a major role in influencing the risk of mother-to-child HIV transmission in our study sample. These observations contest the hitherto significant role of this candidate gene for HIV transmission from mother-to-child in non-African populations and thus, further speak to the limits of extrapolating genomic association studies directly to the African populations from studies conducted elsewhere. It is hoped that more OMICS research in a diverse set of African countries can shed further light on the putative role (or the lack thereof ) of this candidate gene in HIV transmission in the continent, a major global health burden in Africa.