Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maren E. Buck is active.

Publication


Featured researches published by Maren E. Buck.


Biomacromolecules | 2009

Chemical Modification of Reactive Multilayered Films Fabricated from Poly(2-alkenyl azlactone)s: Design of Surfaces that Prevent or Promote Mammalian Cell Adhesion and Bacterial Biofilm Growth

Maren E. Buck; Anthony S. Breitbach; Sonja K. Belgrade; Helen E. Blackwell; David M. Lynn

We report an approach to the design of reactive polymer films that can be functionalized post-fabrication to either prevent or promote the attachment and growth of cells. Our approach is based on the reactive layer-by-layer assembly of covalently crosslinked thin films using a synthetic polyamine and a polymer containing reactive azlactone functionality. Our results demonstrate (i) that the residual azlactone functionality in these films can be exploited to immobilize amine-functionalized chemical motifs similar to those that promote or prevent cell and protein adhesion when assembled as self-assembled monolayers on gold-coated surfaces and (ii) that the immobilization of these motifs changes significantly the behaviors and interactions of cells with the surfaces of these polymer films. We demonstrate that films treated with the hydrophobic molecule decylamine support the attachment and growth of mammalian cells in vitro. In contrast, films treated with the hydrophilic carbohydrate d-glucamine prevent cell adhesion and growth almost completely. The results of additional experiments suggest that these large differences in cell behavior can be understood, at least in part, in terms of differences in the abilities of these two different chemical motifs to promote or prevent the adsorption of protein onto film-coated surfaces. We demonstrate further that this approach can be used to pattern regions of these reactive films that resist the initial attachment and subsequent invasion of mammalian cells for periods of at least one month in the presence of serum-containing cell culture media. Finally, we report that films that prevent the adhesion and growth of mammalian cells also prevent the initial formation of bacterial biofilms when incubated in the presence of the clinically relevant pathogen Pseudomonas aeruginosa . The results of these studies, collectively, suggest the basis of general approaches to the fabrication and functionalization of thin films that prevent, promote, or pattern cell growth or the formation of biofilms on surfaces of interest in the contexts of both fundamental biological studies and a broad range of other practical applications.


Langmuir | 2010

Immobilization of Polymer-Decorated Liquid Crystal Droplets on Chemically Tailored Surfaces

Michael I. Kinsinger; Maren E. Buck; Nicholas L. Abbott; David M. Lynn

We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by the spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). The characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that were dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can be exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and to immobilize these droplets on functional surfaces of interest in a broad range of fundamental and applied contexts.


Chemical Communications | 2010

Azlactone-functionalized polymers as reactive templates for parallel polymer synthesis: synthesis and screening of a small library of cationic polymers in the context of DNA delivery.

Bin Sun; Xianghui Liu; Maren E. Buck; David M. Lynn

Azlactone-functionalized polymers are used as reactive templates for the synthesis of a library of amine-functionalized polymers of interest in the context of DNA delivery and other applications.


Biomacromolecules | 2009

Nanoimprinted Thin Films of Reactive, Azlactone-Containing Polymers : Combining Methods for the Topographic Patterning of Cell Substrates with Opportunities for Facile Post-Fabrication Chemical Functionalization

Nathaniel J. Fredin; Adam H. Broderick; Maren E. Buck; David M. Lynn

Approaches to the fabrication of surfaces that combine methods for the topographic patterning of soft materials with opportunities for facile, post-fabrication chemical functionalization could contribute significantly to advances in biotechnology and a broad range of other areas. Here, we report methods that can be used to introduce well-defined nano- and microscale topographic features to thin films of reactive polymers containing azlactone functionality using nanoimprint lithography (NIL). We demonstrate that NIL can be used to imprint topographic patterns into thin films of poly(2-vinyl-4,4-dimethylazlactone) and a copolymer of methyl methacrylate and 2-vinyl-4,4-dimethylazlactone using silicon masters having patterns of grooves and ridges ranging in width from 400 nm to 2 microm, demonstrating the potential of this method to transfer patterns to films of these reactive polymers over a range of feature sizes and densities. We demonstrate further that the azlactone functionality of these polymers survives temperatures and pressures associated with NIL, and that topographically patterned films can be readily functionalized post-fabrication by treatment of surface-accessible azlactone functionality with small molecules and polymers containing primary amines. The results of experiments in which NIH-3T3 cells were seeded onto films imprinted with lined patterns having a pitch of 4 microm demonstrated that cells attach and proliferate on these azlactone-containing films and that they align in the direction of the imprinted pattern. Finally, we demonstrate that the treatment of these materials with amine-functionalized poly(ethylene glycol) (PEG) can be used to create regions of topographically patterned films that prevent cell adhesion. The results of this study suggest approaches to the functionalization of topographically patterned surfaces with a broad range of chemical functionality (e.g., peptides, proteins, carbohydrates, etc.) of biotechnological interest. The ability to manipulate and define both the physical topography and chemical functionality of these reactive materials could provide opportunities to investigate the combined effects of substrate topography and chemical functionality on cell behavior and may also be useful in a broad range of other applications.


Advanced Materials | 2016

Programming Molecular Association and Viscoelastic Behavior in Protein Networks.

Lawrence J. Dooling; Maren E. Buck; Wen-Bin Zhang; David A. Tirrell

A set of recombinant artificial proteins that can be cross-linked, by either covalent bonds or association of helical domains or both, is described. The designed proteins can be used to construct molecular networks in which the mechanism of crosslinking determines the time-dependent responses to mechanical deformation.


Langmuir | 2008

Dynamic ordering transitions of liquid crystals driven by interfacial complexes formed between polyanions and amphiphilic polyamines.

Michael I. Kinsinger; Maren E. Buck; Fernando Campos; David M. Lynn; Nicholas L. Abbott

We report the design of an amphiphilic polyamine (polymer 1) based on poly(2-alkenyl azlactone) that strongly couples the formation of polyelectrolyte complexes at aqueous/liquid crystal (LC) interfaces to ordering transitions in the LC. We demonstrate that the addition of a strong anionic polyelectrolyte to aqueous solutions in contact with polymer 1-laden LC interfaces (prepared by Langmuir-Schaefer transfer of monolayers of polymer 1 onto micrometer-thick films of nematic LC) triggers ordering transitions in the LCs. We further demonstrate that changes in the ordering of the LCs (i) are driven by electrostatic interactions between the polyelectrolytes, (ii) involve multivalent interactions between the polyelectrolytes, and (iii) are triggered by reorganization of the hydrophobic side chains of amphiphilic polymer 1 upon formation of the interfacial complexes. The results presented in this paper lead us to conclude that ordering transitions in LCs can be used to provide insights into the structure and dynamics of interfacial complexes formed between polyelectrolytes.


Advanced Engineering Materials | 2011

Layer‐by‐Layer Fabrication of Covalently Crosslinked and Reactive Polymer Multilayers Using Azlactone‐Functionalized Copolymers: A Platform for the Design of Functional Biointerfaces

Maren E. Buck; David M. Lynn

We report a method for modulating the physicochemical properties of surfaces that is based on the reactive layer-by-layer fabrication of covalently crosslinked thin films using azlactone-functionalized copolymers. We demonstrate that copolymers containing different molar ratios of methylmethacrylate (MMA) and 2-vinyl-4,4-dimethylazlactone (VDMA) can be alternately deposited with poly(ethyleneimine) to assemble covalently crosslinked thin films. Characterization using ellipsometry demonstrates that, in general, film growth and thickness decrease as the content of reactive, azlactone functionality in the copolymer used to assemble the film decreases. Reflective infrared spectroscopy experiments demonstrate that films fabricated from MMA:VDMA copolymers contain residual azlactone functionality and that these reactive groups can be exploited to modify film-coated surfaces. Fabricating films from MMA:VDMA copolymers containing different compositions permitted modulation of the density of reactive groups within the films and, thus, the extent to which the films are functionalized by exposure to small molecule amines. For example, functionalization of MMA:VDMA copolymer films with the small molecule D-glucamine resulted in films with water contact angles that varied with the composition of the copolymer used to fabricate the film (e.g., as the azlactone content in the film increased, glucamine-modified films became more hydrophilic). We demonstrate further that treatment of copolymer-containing films with glucamine resulted in changes in the numbers of mammalian cells that grow on the surfaces of the films. Our results suggest the basis of methods that could be used to modulate or tune the density of chemical and biological functionality presented on surfaces of interest in a variety of fundamental and applied contexts.


Microscopy Research and Technique | 2010

Characterization of Nanoscale Transformations in Polyelectrolyte Multilayers Fabricated from Plasmid DNA Using Laser Scanning Confocal Microscopy in Combination with Atomic Force Microscopy

Nathaniel J. Fredin; Ryan M. Flessner; Christopher M. Jewell; Shane L. Bechler; Maren E. Buck; David M. Lynn

Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) were used to characterize changes in nanoscale structure that occur when ultrathin polyelectrolyte multilayers (PEMs) are incubated in aqueous media. The PEMs investigated here were fabricated by the deposition of alternating layers of plasmid DNA and a hydrolytically degradable polyamine onto a precursor film composed of alternating layers of linear poly(ethylene imine) (LPEI) and sodium poly(styrene sulfonate) (SPS). Past studies of these materials in the context of gene delivery revealed transformations from a morphology that is smooth and uniform to one characterized by the formation of nanometer‐scale particulate structures. We demonstrate that in‐plane registration of LSCM and AFM images acquired from the same locations of films fabricated using fluorescently labeled polyelectrolytes allows the spatial distribution of individual polyelectrolyte species to be determined relative to the locations of topographic features that form during this transformation. Our results suggest that this physical transformation leads to a morphology consisting of a relatively less disturbed portion of film composed of polyamine and DNA juxtaposed over an array of particulate structures composed predominantly of LPEI and SPS. Characterization by scanning electron microscopy and energy‐dispersive X‐ray microanalysis provides additional support for this interpretation. The combination of these different microscopy techniques provides insight into the structures and dynamics of these multicomponent thin films that cannot be achieved using any one method alone, and could prove useful for the further development of these assemblies as platforms for the surface‐mediated delivery of DNA. Microsc. Res. Tech. 73:834–844, 2010.


Advanced Materials | 2007

Layer‐by‐Layer Assembly of Reactive Ultrathin Films Mediated by Click‐Type Reactions of Poly(2‐Alkenyl Azlactone)s

Maren E. Buck; Jingtao Zhang; David M. Lynn


Polymer Chemistry | 2012

Azlactone-functionalized polymers as reactive platforms for the design of advanced materials: Progress in the last ten years

Maren E. Buck; David M. Lynn

Collaboration


Dive into the Maren E. Buck's collaboration.

Top Co-Authors

Avatar

David M. Lynn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Adam H. Broderick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Michael I. Kinsinger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nicholas L. Abbott

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David A. Tirrell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathaniel J. Fredin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ryan M. Flessner

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ahmad K. Omar

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony S. Breitbach

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bin Sun

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge