Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maren Watkins is active.

Publication


Featured researches published by Maren Watkins.


Journal of Biological Chemistry | 1999

Contulakin-G, an O-glycosylated invertebrate neurotensin

A. Grey Craig; Thomas Norberg; David Griffin; Carl Hoeger; Mateen Akhtar; Karsten Schmidt; William Low; John Dykert; Elliott Richelson; Valérie Navarro; Jean Mazella; Maren Watkins; David R. Hillyard; Julita S. Imperial; Lourdes J. Cruz; Baldomero M. Olivera

We have purified contulakin-G, a 16-amino acid O-linked glycopeptide (pGlu-Ser-Glu-Glu-Gly-Gly-Ser-Asn-Ala-Thr-Lys-Lys-Pro-Tyr-Ile-Leu-OH, pGlu is pyroglutamate) from Conus geographus venom. The major glycosylated form of contulakin-G was found to incorporate the disaccharide β-d-Galp-(1→3)-α-d-GalpNAc-(1→) attached to Thr10. The C-terminal sequence of contulakin-G shows a high degree of similarity to the neurotensin family of peptides. Synthetic peptide replicates of Gal(β→3) GalNAc(α→)Thr10 contulakin-G and its nonglycosylated analog were prepared using an Fmoc (9-fluorenylmethoxycarbonyl) protected solid phase synthesis strategy. The synthetic glycosylated con- tulakin-G, when administered intracerebroventricular into mice, was found to result in motor control-associated dysfunction observed for the native peptide. Contulakı́n-G was found to be active at 10-fold lower doses than the nonglycosylated Thr10 contulakin-G analog. The binding affinities of contulakin-G and the nonglycosylated Thr10 contulakin-G for a number of neurotensin receptor types including the human neurotensin type 1 receptor (hNTR1), the rat neurotensin type 1 and type 2 receptors, and the mouse neurotensin type 3 receptor were determined. The binding affinity of the nonglycosylated Thr10contulakin-G was approximately an order of magnitude lower than that of neurotensin1–13 for all the receptor types tested. In contrast, the glycosylated form of contulakin-G exhibited significantly weaker binding affinity for all of the receptors tested. However, both contulakin-G and nonglycosylated Thr10 contulakin-G were found to be potent agonists of rat neurotensin receptor type 1. Based on these results, we conclude that O-linked glycosylation appears to be a highly unusual strategy for increasing the efficacy of toxins directed against neurotransmitter receptors.


Annals of the New York Academy of Sciences | 1999

Speciation of Cone Snails and Interspecific Hyperdivergence of Their Venom Peptides: Potential Evolutionary Significance of Intronsa

Baldomero M. Olivera; Craig S. Walker; G. Edward Cartier; David Hooper; Ameurfina D. Santos; Robert Schoenfeld; Reshma Shetty; Maren Watkins; Pradip K. Bandyopadhyay; David R. Hillyard

ABSTRACT: All 500 species of cone snails (Conus) are venomous predators. From a biochemical/genetic perspective, differences among Conus species may be based on the 50‐200 different peptides in the venom of each species. Venom is used for prey capture as well as for interactions with predators and competitors. The venom of every species has its own distinct complement of peptides. Some of the interspecific divergence observed in venom peptides can be explained by differential expression of venom peptide superfamilies in different species and of peptide superfamily branching in various Conus lineages into pharmacologic groups with different targeting specificity. However, the striking interspecific divergence of peptide sequences is the dominant factor in the differences observed between venoms. The small venom peptides (typically 10‐35 amino acids in length) are processed from larger prepropeptide precursors (ca. 100 amino acids). If interspecific comparisons are made between homologous prepropeptides, the three different regions of a Conus peptide precursor (signal sequence, pro‐region, mature peptide) are found to have diverged at remarkably different rates. Analysis of synonymous and nonsynonymous substitution rates for the different segments of a prepropeptide suggests that mutation frequency varies by over an order of magnitude across the segments, with the mature toxin region undergoing the highest rate. The three sections of the prepropeptide which exhibit apparently different mutation rates are separated by introns. This striking segment‐specific rate of divergence of Conus prepropeptides suggests a role for introns in evolution: exons separated by introns have the potential to evolve very different mutation rates. Plausible mechanisms that could underlie differing mutational frequency in the different exons of a gene are discussed.


The Journal of Neuroscience | 1998

μ-Conotoxin PIIIA, a New Peptide for Discriminating among Tetrodotoxin-Sensitive Na Channel Subtypes

Ki Joon Shon; Baldomero M. Olivera; Maren Watkins; Richard B. Jacobsen; William R. Gray; Christina Z. Floresca; Lourdes J. Cruz; David R. Hillyard; Anette Brink; Heinrich Terlau; Doju Yoshikami

We report the characterization of a new sodium channel blocker, μ-conotoxin PIIIA (μ-PIIIA). The peptide has been synthesized chemically and its disulfide bridging pattern determined. The structure of the new peptide is: where Z = pyroglutamate andO = 4-trans-hydroxyproline. We demonstrate that Arginine-14 (Arg14) is a key residue; substitution by alanine significantly decreases affinity and results in a toxin unable to block channel conductance completely. Thus, like all toxins that block at Site I, μ-PIIIA has a critical guanidinium group. This peptide is of exceptional interest because, unlike the previously characterized μ-conotoxin GIIIA (μ-GIIIA), it irreversibly blocks amphibian muscle Na channels, providing a useful tool for synaptic electrophysiology. Furthermore, the discovery of μ-PIIIA permits the resolution of tetrodotoxin-sensitive sodium channels into three categories: (1) sensitive to μ-PIIIA and μ-conotoxin GIIIA, (2) sensitive to μ-PIIIA but not to μ-GIIIA, and (3) resistant to μ-PIIIA and μ-GIIIA (examples in each category are skeletal muscle, rat brain Type II, and many mammalian CNS subtypes, respectively). Thus, μ-conotoxin PIIIA provides a key for further discriminating pharmacologically among different sodium channel subtypes.


Molecular Phylogenetics and Evolution | 2014

Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea)

Nicolas Puillandre; Philippe Bouchet; Thomas F. Duda; S. Kauferstein; Alan J. Kohn; Baldomero M. Olivera; Maren Watkins; Christopher G. Meyer

We present a large-scale molecular phylogeny that includes 320 of the 761 recognized valid species of the cone snails (Conus), one of the most diverse groups of marine molluscs, based on three mitochondrial genes (COI, 16S rDNA and 12S rDNA). This is the first phylogeny of the taxon to employ concatenated sequences of several genes, and it includes more than twice as many species as the last published molecular phylogeny of the entire group nearly a decade ago. Most of the numerous molecular phylogenies published during the last 15years are limited to rather small fractions of its species diversity. Bayesian and maximum likelihood analyses are mostly congruent and confirm the presence of three previously reported highly divergent lineages among cone snails, and one identified here using molecular data. About 85% of the species cluster in the single Large Major Clade; the others are divided between the Small Major Clade (∼12%), the Conus californicus lineage (one species), and a newly defined clade (∼3%). We also define several subclades within the Large and Small major clades, but most of their relationships remain poorly supported. To illustrate the usefulness of molecular phylogenies in addressing specific evolutionary questions, we analyse the evolution of the diet, the biogeography and the toxins of cone snails. All cone snails whose feeding biology is known inject venom into large prey animals and swallow them whole. Predation on polychaete worms is inferred as the ancestral state, and diet shifts to molluscs and fishes occurred rarely. The ancestor of cone snails probably originated from the Indo-Pacific; rather few colonisations of other biogeographic provinces have probably occurred. A new classification of the Conidae, based on the molecular phylogeny, is published in an accompanying paper.


FEBS Journal | 2005

Characterization of D‐amino‐acid‐containing excitatory conotoxins and redefinition of the I‐conotoxin superfamily

Olga Buczek; Doju Yoshikami; Maren Watkins; Grzegorz Bulaj; Elsie C. Jimenez; Baldomero M. Olivera

Post‐translational isomerization of l‐amino acids to d‐amino acids is a subtle modification, not detectable by standard techniques such as Edman sequencing or MS. Accurate predictions require more sequences of modified polypeptides. A 46‐amino‐acid‐long conotoxin, r11a, belonging to the I‐superfamily was previously shown to have a d‐Phe residue at position 44. In this report, we characterize two related peptides, r11b and r11c, with d‐Phe and d‐Leu, respectively, at the homologous position. Electrophysiological tests show that all three peptides induce repetitive activity in frog motor nerve, and epimerization of the single amino acid at the third position from the C‐terminus attenuates the potency of r11a and r11b, but not that of r11c. Furthermore, r11c (but neither r11a nor r11b) also acts on skeletal muscle. We identified more cDNA clones encoding conopeptide precursors with Cys patterns similar to r11a/b/c. Although the predicted mature toxins have the same cysteine patterns, they belong to two different gene superfamilies. A potential correlation between the identity of the gene superfamily to which the I‐conotoxin belongs and the presence or absence of a d‐amino acid in the primary sequence is discussed. The great diversity of I‐conopeptide sequences provides a rare opportunity for defining parameters that may be important for this most stealthy of all post‐translational modifications. Our results indicate that neither the chemical nature of the side chain nor the precise vicinal sequence around the modified residue seem to be critical, but there may be favored loci for isomerization to a d‐amino acid.


Journal of Biological Chemistry | 2005

A Novel α-Conotoxin, PeIA, Cloned from Conus pergrandis, Discriminates between Rat α9α10 and α7 Nicotinic Cholinergic Receptors

J. Michael McIntosh; Paola V. Plazas; Maren Watkins; María Eugenia Gómez-Casati; Baldomero M. Olivera; A. Belén Elgoyhen

The α9 and α10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of α9 and α10 overlaps with that of α7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin α-conotoxin PeIA that discriminates between α9α10 and α7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. α-Conotoxin PeIA displayed a 260-fold higher selectivity for α-bungarotoxin-sensitive α9α10 nAChRs compared with α-bungarotoxin-sensitive α7 receptors. The IC50 of the toxin was 6.9 ± 0.5 nm and 4.4 ± 0.5 nm for recombinant α9α10 and wild-type hair cell nAChRs, respectively. α-Conotoxin PeIA bears high resemblance to α-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither α-conotoxin MII nor α-conotoxin GIC at concentrations of 10 μm blocked acetylcholine responses elicited in Xenopus oocytes injected with the α9 and α10 subunits. Among neuronal non-α-bungarotoxin-sensitive receptors, α-conotoxin PeIA was also active at α3β2 receptors and chimeric α6/α3β2β3 receptors. α-Conotoxin PeIA represents a novel probe to differentiate responses mediated either through α9α10 or α7 nAChRs in those tissues where both receptors are expressed.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Specialized insulin is used for chemical warfare by fish-hunting cone snails

Helena Safavi-Hemami; Joanna Gajewiak; Santhosh Karanth; Samuel D. Robinson; Beatrix Ueberheide; Adam D. Douglass; Amnon Schlegel; Julita S. Imperial; Maren Watkins; Pradip K. Bandyopadhyay; Mark Yandell; Qing Li; Anthony W. Purcell; Raymond S. Norton; Lars Ellgaard; Baldomero M. Olivera

Significance The discovery and characterization of insulin, a key hormone of energy metabolism, provided a life-saving drug for diabetics. We show that insulin can be subverted for nefarious biological purposes: Venomous cone snails use specialized insulins to elicit hypoglycemic shock, facilitating capture of their fish prey. This finding extends our understanding of the chemical and functional diversity of venom components, such that the snail’s arsenal includes a diverse set of neurotoxins that alters neuronal circuitry, as well as components that override glucose homeostasis. The highly expressed venom insulins are distinct from molluscan insulins and exhibit remarkable similarity to fish insulins. They are the smallest of all insulins characterized from any source, potentially providing new insights into structure-function elements of insulin action. More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail’s distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail.


Molecular Phylogenetics and Evolution | 2010

Evolution of Conus peptide toxins: Analysis of Conus californicus Reeve, 1844

Jason S. Biggs; Maren Watkins; Nicolas Puillandre; John Paul Ownby; Estuardo López-Vera; Sean Christensen; Karla Juarez Moreno; Johanna Bernaldez; Alexei Licea-Navarro; Patrice Showers Corneli; Baldomero M. Olivera

Conus species are characterized by their hyperdiverse toxins, encoded by a few gene superfamilies. Our phylogenies of the genus, based on mitochondrial genes, confirm previous results that C. californicus is highly divergent from all other species. Genetic and biochemical analysis of their venom peptides comprise the fifteen most abundant conopeptides and over 50 mature cDNA transcripts from the venom duct. Although C. californicus venom retains many of the general properties of other Conus species, they share only half of the toxin gene superfamilies found in other Conus species. Thus, in these two lineages, approximately half of the rapidly diversifying gene superfamilies originated after an early Tertiary split. Such results demonstrate that, unlike endogenously acting gene families, these genes are likely to be significantly more restricted in their phylogenetic distribution. In concordance with the evolutionary distance of C. californicus from other species, there are aspects of prey-capture behavior and prey preferences of this species that diverges significantly from all other Conus.


Toxicon | 2001

Contryphans from Conus textile venom ducts.

Elsie C. Jimenez; Maren Watkins; L.J. Juszczak; Lourdes J. Cruz; Baldomero M. Olivera

Contryphans are unusual Conus peptides which contain a distinctive post-translational modification, D-tryptophan or D-leucine. cDNA clones encoding new contryphans from the mollusc-hunting cone snail Conus textile were identified and the inferred mature peptides were synthesized: contryphan-Tx (Gly-Cys-Hyp-D-Trp-Gln-Pro-Tyr-Cys-NH(2)), Leu-contryphan-Tx (Cys-Val-D-Leu-Tyr-Pro-Trp-Cys-NH(2)) and contryphan R/Tx which is identical to contryphan-R [Jimenez et al., 1996. Contryphan is a D-tryptophan containing Conus peptide. J. Biol. Chem. 281, 28002-28005]. Leu-contryphan-Tx exhibits a single peak, but contryphan-Tx shows two peaks under reverse-phase high-performance liquid chromatography conditions. Ultraviolet resonance Raman spectroscopy demonstrates a difference in the D-tryptophan dihedral angle for the two contryphan-Tx equilibrium conformers. Both the sequences and in vivo effects of all contryphans isolated suggest that there are two major branches of the contryphan family.


Journal of Biological Chemistry | 2007

Novel conantokins from Conus parius venom are specific antagonists of N-methyl-D-aspartate receptors.

Russell W. Teichert; Elsie C. Jimenez; Vernon Twede; Maren Watkins; Michael Hollmann; Grzegorz Bulaj; Baldomero M. Olivera

We report the discovery and characterization of three conantokin peptides from the venom of Conus parius. Each peptide (conantokin-Pr1, -Pr2, and -Pr3) contains 19 amino acids with three γ-carboxyglutamate (Gla) residues, a post-translationally modified amino acid characteristic of conantokins. The new peptides contain several amino acid residues that differ from previous conantokin consensus sequences. Notably, the new conantokins lack Gla at the 3rd position from the N terminus, where the Gla residue is replaced by either aspartate or by another post-translationally modified residue, 4-trans-hydroxyproline. Conantokin-Pr3 is the first conantokin peptide to have three different post-translational modifications. Conantokins-Pr1 and -Pr2 adopt α-helical conformations in the presence of divalent cations (Mg2+ and Ca2+) but are generally unstructured in the absence of divalent cations. Conantokin-Pr3 adopts an α-helical conformation even in the absence of divalent cations. Like other conantokins, the new peptides induced sleep in young mice and hyperactivity in older mice upon intracranial injection. Electrophysiological assays confirmed that conantokins-Pr1, -Pr2, and -Pr3 are N-methyl-d-aspartate (NMDA) receptor antagonists, with highest potency for NR2B-containing NMDA receptors. Conantokin-Pr3 demonstrated ∼10-fold selectivity for NR2B-containing NMDA receptors. However, conantokin-Pr2 showed minimal differences in potency between NR2B and NR2D. Conantokins-Pr1, -Pr2, and -Pr3 all demonstrated high specificity of block for NMDA receptors, when tested against various ligand-gated ion channels. Conus parius conantokins allow for a better definition of structural and functional features of conantokins as ligands targeting NMDA receptors.

Collaboration


Dive into the Maren Watkins's collaboration.

Top Co-Authors

Avatar

Baldomero M. Olivera

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

David R. Hillyard

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lourdes J. Cruz

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge