Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret E. Tome is active.

Publication


Featured researches published by Margaret E. Tome.


Metabolism-clinical and Experimental | 1990

Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle

Marc E. Tischler; Sara Rosenberg; Soisungwan Satarug; Erik J. Henriksen; Christopher R. Kirby; Margaret E. Tome; Peter B. Chase

Mechanisms of accelerated proteolysis were compared in denervated and unweighted (by tail-cast suspension) soleus muscles. In vitro and in vivo proteolysis were more rapid and lysosomal latency was lower in denervated than in unweighted muscle. In vitro, lysosomotropic agents (eg, chloroquine, methylamine) did not lessen the increase in proteolysis caused by unweighting, but abolished the difference in proteolysis between denervated and unweighted muscle. Leucine methylester, an indicator of lysosome fragility, lowered latency more in denervated than in unweighted muscle. 3-Methyladenine, which inhibits phagosome formation, increased latency similarly in all muscles tested. Mersalyl, a thiol protease inhibitor, and 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8), which antagonizes sarcoplasmic reticulum release of Ca2+, reduced accelerated proteolysis caused by unweighting without diminishing the faster proteolysis due to denervation. Calcium ionophore (A23187) increased proteolysis more so in unweighted than control muscles whether or not Ca2+ was present. Different mechanisms of accelerated proteolysis were studied further by treating muscles in vivo for 24 hours with chloroquine or mersalyl. Chloroquine diminished atrophy of the denervated but not the unweighted muscle, whereas mersalyl prevented atrophy of the unweighted but not of the denervated muscle, both by inhibiting in vivo proteolysis. These results suggest that (1) atrophy of denervated, but not of unweighted, soleus muscle involves increased lysosomal proteolysis, possibly caused by greater permeability of the lysosome, and (2) cytosolic proteolysis is important in unweighting atrophy, involving some role of Ca2(+)-dependent proteolysis and/or thiol proteases.


Biochemical Pharmacology | 2000

Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon

Katerina Dvorakova; Claire M. Payne; Margaret E. Tome; Margaret M. Briehl; Thomas McClure; Robert T. Dorr

Imexon is an iminopyrrolidone derivative that has selective antitumor activity in multiple myeloma. The exact mechanism of imexon action is unknown. In human 8226 myeloma cells, the cytotoxicity of imexon was schedule-dependent, and long exposures (> or = 48 hr) to low concentrations of imexon were most effective at inducing cytotoxicity. Our data suggest that imexon does not affect DNA, but it can alkylate thiols by binding to the sulfhydryl group. We have also demonstrated by HPLC studies that in human 8226 myeloma cells, imexon depletes cellular stores of cysteine and glutathione. Oxidative stress in 8226 cells exposed to imexon was detected by immunohistochemical staining with a monoclonal antibody to 8-hydroxydeoxyguanosine (8-OHdG), followed by confocal microscopy. These images showed increased levels of 8-OHdG in the cytoplasm of cells treated with different concentrations of imexon at 8, 16, and 48 hr. Interestingly, 8-OHdG staining was not observed in the nuclei of imexon-treated cells, in contrast to the diffuse staining seen with t-butyl hydroperoxide. Myeloma cells exposed to imexon showed classic morphologic features of apoptosis upon electron microscopy, and increased levels of phosphatidylserine exposure, detected as Annexin-V binding, on the cell surface. To prevent depletion of thiols, 8226 myeloma cells exposed to imexon were treated with N-acetylcysteine (NAC). Simultaneous, as well as sequential, treatment with NAC before imexon exposure resulted in protection of myeloma cells against imexon-induced cytotoxicity. Conversely, the glutathione synthesis inhibitor buthionine sulfoximine increased imexon cytotoxicity. These data suggest that imexon perturbs cellular thiols and induces oxidative stress leading to apoptosis in human myeloma cells.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Modulation of human glutathione s-transferases by polyphenon e intervention.

H.-H. Sherry Chow; Iman A. Hakim; Donna R. Vining; James A. Crowell; Margaret E. Tome; James Ranger-Moore; Catherine Cordova; Dalia M. Mikhael; Margaret M. Briehl; David S. Alberts

Purpose: Green tea consumption has been associated with decreased risk of certain types of cancers in humans. Induction of detoxification enzymes has been suggested as one of the biochemical mechanisms responsible for the cancer-preventive effect of green tea. We conducted this clinical study to determine the effect of repeated green tea polyphenol administration on a major group of detoxification enzymes, glutathione S-transferases (GST). Methods: A total of 42 healthy volunteers underwent a 4-week washout period by refraining from tea or tea-related products. At the end of the washout period, a fasting blood sample was collected, and plasma and lymphocytes were isolated for assessment of GST activity and level. Following the baseline evaluation, study participants underwent 4 weeks of green tea polyphenol intervention in the form of a standardized Polyphenon E preparation at a dose that contains 800 mg epigallocatechin gallate (EGCG) once a day. Polyphenon E was taken on an empty stomach to optimize the oral bioavailability of EGCG. Upon completion of the intervention, samples were collected for postintervention GST assessment. Results: Four weeks of Polyphenon E intervention enhanced the GST activity in blood lymphocytes from 30.7 ± 12.2 to 35.1 ± 14.3 nmol/min/mg protein, P = 0.058. Analysis based on baseline activity showed that a statistically significant increase (80%, P = 0.004) in GST activity was observed in individuals with baseline activity in the lowest tertile, whereas a statistically significant decrease (20%, P = 0.02) in GST activity was observed in the highest tertile. In addition, Polyphenon E intervention significantly increased the GST-π level in blood lymphocytes from 2,252.9 ± 734.2 to 2,634.4 ± 1,138.3 ng/mg protein, P = 0.035. Analysis based on baseline level showed that this increase was only significant (P = 0.003) in individuals with baseline level in the lowest tertile, with a mean increase of 80%. Repeated Polyphenon E administration had minimal effects on lymphocyte GST-μ and plasma GST-α levels. There was a small but statistically significant decrease (8%, P = 0.003) in plasma GST-α levels in the highest tertile. Conclusions: We conclude that 4 weeks of Polyphenon E administration resulted in differential effects on GST activity and level based on baseline enzyme activity/level, with GST activity and GST-π level increased significantly in individuals with low baseline enzyme activity/level. This suggests that green tea polyphenol intervention may enhance the detoxification of carcinogens in individuals with low baseline detoxification capacity. (Cancer Epidemiol Biomarkers Prev 2007;16(8):1662–6)


Cancer Research | 2009

Increased Manganese Superoxide Dismutase Expression or Treatment with Manganese Porphyrin Potentiates Dexamethasone-Induced Apoptosis in Lymphoma Cells

Melba C. Jaramillo; Jennifer B. Frye; James D. Crapo; Margaret M. Briehl; Margaret E. Tome

Glucocorticoid-induced apoptosis is exploited for the treatment of hematologic malignancies. Innate and acquired resistance limits treatment efficacy; however, resistance mechanisms are not well understood. Previously, using WEHI7.2 murine thymic lymphoma cells, we found that increasing the resistance to hydrogen peroxide (H(2)O(2)) by catalase transfection or selection for H(2)O(2) resistance caused glucocorticoid resistance. This suggests the possibility that increasing H(2)O(2) sensitivity could sensitize the cells to glucocorticoids. In other cell types, increasing manganese superoxide dismutase (MnSOD) can increase intracellular H(2)O(2). The current study showed that increased expression of MnSOD sensitized WEHI7.2 cells to glucocorticoid-induced apoptosis and H(2)O(2). Treatment of WEHI7.2 cells with the catalytic antioxidant Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)), a manganoporphyrin, mimicked the effects of increased MnSOD expression. MnTE-2-PyP(5+) also sensitized WEHI7.2 cells to cyclophosphamide and inhibited cell growth; it had no effect on the WEHI7.2 cell response to doxorubicin or vincristine. In primary follicular lymphoma cells, MnTE-2-PyP(5+) increased cell death due to dexamethasone. Treatment of H9c2 cardiomyocytes with MnTE-2-PyP(5+) inhibited doxorubicin cytotoxicity. The profile of MnTE-2-PyP(5+) effects suggests MnTE-2-PyP(5+) has potential for use in hematologic malignancies that are treated with glucocorticoids, cyclophosphamide, and doxorubicin.


Neurosignals | 1997

Cellular Eukaryotic Initiation Factor 5A Content as a Mediator of Polyamine Effects on Growth and Apoptosis

Margaret E. Tome; Eugene W. Gerner

The polyamines are essential for eukaryotic cell growth. One of the most critical effects of polyamines on cell growth is the availability of spermidine for the post-translational modification of eIF-5A. Because hypusine-containing eIF-5A is necessary for cell proliferation, depletion of cellular polyamines suppresses growth by depleting cellular modified eIF-5A content. Excess putrescine accumulations in DH23A/b cells induces apoptosis and suppresses the formation of hypusine-containing eIF-5A. Treatment of DH23A/b cells with diaminoheptane also suppresses modified eIF-5A formation and induces apoptosis. These data suggest that suppression of modified eIF-5A formation may play a role in putrescine-induced apoptosis as well.


Free Radical Biology and Medicine | 2012

Manganese Porphyrin, MnTE-2-PyP5 +, Acts as a Pro-Oxidant to Potentiate Glucocorticoid-Induced Apoptosis in Lymphoma Cells

Melba C. Jaramillo; Margaret M. Briehl; James D. Crapo; Ines Batinic-Haberle; Margaret E. Tome

Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP(5+), augments glucocorticoid-induced apoptosis in WEHI7.2 murine thymic lymphoma cells, suggesting that it may have potential as a lymphoma therapeutic. However, the mechanism by which MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis is unknown. Previously, we showed that glucocorticoid treatment increases the steady state levels of hydrogen peroxide ([H(2)O(2)](ss)) and oxidizes the redox environment in WEHI7.2 cells. In the current study, we found that when MnTE-2-PyP(5+) is combined with glucocorticoids, it augments dexamethasone-induced oxidative stress however, it does not augment the [H(2)O(2)](ss) levels. The combined treatment depletes GSH, oxidizes the 2GSH:GSSG ratio, and causes protein glutathionylation to a greater extent than glucocorticoid treatment alone. Removal of the glucocorticoid-generated H(2)O(2) or depletion of glutathione by BSO prevents MnTE-2-PyP(5+) from augmenting glucocorticoid-induced apoptosis. In combination with glucocorticoids, MnTE-2-PyP(5+) glutathionylates p65 NF-κB and inhibits NF-κB activity. Inhibition of NF-κB with SN50, an NF- κB inhibitor, enhances glucocorticoid-induced apoptosis to the same extent as MnTE-2-PyP(5+). Taken together, these findings indicate that: 1) H(2)O(2) is important for MnTE-2-PyP(5+) activity; 2) Mn-TE-2-PyP(5+) cycles with GSH; and 3) MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis by glutathionylating and inhibiting critical survival proteins, including NF-κB. In the clinic, over-expression of NF-κB is associated with a poor prognosis in lymphoma. MnTE-2-PyP(5+) may therefore, synergize with glucocorticoids to inhibit NF-κB and improve current treatment.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Characterization of squamous esophageal cells resistant to bile acids at acidic pH: implication for Barrett's esophagus pathogenesis

Aaron Goldman; Hwu Dau Rw Chen; Heather B. Roesly; Kimberly A. Hill; Margaret E. Tome; Bohuslav Dvorak; Harris Bernstein; Katerina Dvorak

Barretts esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear. We hypothesize that BE tissue originates from esophageal squamous cells, which can differentiate to columnar cells as a result of repeated exposure to gastric acid and bile acids, two components of refluxate implicated in BE pathology. To test this hypothesis, we repeatedly exposed squamous esophageal HET1A cells to 0.2 mM bile acid (BA) cocktail at pH 5.5 and developed an HET1AR-resistant cell line. These cells are able to survive and proliferate after repeated 2-h treatments with BA at pH 5.5. HET1AR cells are resistant to acidification and express markers of columnar differentiation, villin, CDX2, and cytokeratin 8/18. HET1AR cells have increased amounts of reactive oxygen species, concomitant with a decreased level and activity of manganese superoxide dismutase compared with parental cells. Furthermore, HET1AR cells express proteins and activate signaling pathways associated with inflammation, cell survival, and tumorigenesis that are thought to contribute to BE and EAC development. These include STAT3, NF-κB, epidermal growth factor receptor (EGFR), cyclooxygenase-2, interleukin-6, phosphorylated mammalian target of rapamycin (p-mTOR), and Mcl-1. The expression of prosurvival and inflammatory proteins and resistance to cell death could be partially modified by inhibition of STAT3 signaling. In summary, our study shows that long-term exposure of squamous cells to BA at acidic pH causes the cells to display the same characteristics and markers as BE.


FEBS Letters | 2003

Early changes in glucose and phospholipid metabolism following apoptosis induction by IFN-γ/TNF-α in HT-29 cells

Norbert W. Lutz; Margaret E. Tome; Patrick J. Cozzone

The effects of apoptosis induction on glucose and phospholipid metabolite levels in cancer were studied using human colon adenocarcinoma cells (HT‐29). Apoptosis was induced by co‐incubation with 200 U/ml tumor necrosis factor (TNF)‐α for 4, 8 or 15 h, after sensitization with 500 U/ml interferon (IFN)‐γ for 7 h. Perchloric acid extracts were analyzed by 1H and 31P nuclear magnetic resonance (NMR) spectroscopy. Significantly increased lactate and NTP (all nucleoside 5’‐triphosphates) signals were detected 4 h after apoptosis‐inducing IFN‐γ/TNF‐α treatment, but not in cells which were TNF‐α‐treated without IFN‐γ preincubation. Simultaneous lactate and NTP changes, if confirmed in vivo, may serve as early, non‐invasive markers of treatment response in some tumors.


Free Radical Biology and Medicine | 2015

Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells

Melba C. Jaramillo; Margaret M. Briehl; Ines Batinic-Haberle; Margaret E. Tome

The manganese porphyrin, manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin (MnTE-2-PyP(5+)), acts as a pro-oxidant in the presence of intracellular H2O2. Mitochondria are the most prominent source of intracellular ROS and important regulators of the intrinsic apoptotic pathway. Due to the increased oxidants near and within the mitochondria, we hypothesized that the mitochondria are a target of the pro-oxidative activity of MnTE-2-PyP(5+) and that we could exploit this effect to enhance the chemotherapeutic response in lymphoma. In this study, we demonstrate that MnTE-2-PyP(5+) modulates the mitochondrial redox environment and sensitizes lymphoma cells to antilymphoma chemotherapeutics. MnTE-2-PyP(5+) increased dexamethasone-induced mitochondrial ROS and oxidation of the mitochondrial glutathione pool in lymphoma cells. The combination treatment induced glutathionylation of Complexes I, III, and IV in the electron transport chain, and decreased the activity of Complexes I and III, but not the activity of Complex IV. Treatment with the porphyrin and dexamethasone also decreased cellular ATP levels. Rho(0) malignant T-cells with impaired mitochondrial electron transport chain function were less sensitive to the combination treatment than wild-type cells. These findings suggest that mitochondria are important for the porphyrins ability to enhance cell death. MnTE-2-PyP(5+) also augmented the effects of 2-deoxy-D-glucose (2DG), an antiglycolytic agent. In combination with 2DG, MnTE-2-PyP(5+) increased protein glutathionylation, decreased ATP levels more than 2DG treatment alone, and enhanced 2DG-induced cell death in primary B-ALL cells. MnTE-2-PyP(5+) did not enhance dexamethasone- or 2DG-induced cell death in normal cells. Our findings suggest that MnTE-2-PyP(5+) has potential as an adjuvant for the treatment of hematologic malignancies.


Anti-Cancer Drugs | 2002

Imexon activates an intrinsic apoptosis pathway in RPMI8226 myeloma cells

Katerina Dvorakova; Claire M. Payne; Terry H. Landowski; Margaret E. Tome; Daniel S. Halperin; Robert T. Dorr

Imexon is a new antitumor agent with high activity in multiple myeloma. This drug induces apoptosis, oxidative stress and mitochondrial alterations. However, it was unknown whether imexon activates an intrinsic apoptotic pathway that is associated with activation of caspase-9 or an extrinsic pathway that is induced by receptor-mediated signals such as Fas ligand characterized by caspase-8 activation. In addition, we wanted to investigate the effect of imexon on Bcl-2 family proteins. In RPMI8226 myeloma cells, imexon activated caspase-9 and -3 in a time- and concentration-dependent manner. In contrast, cleavage of procaspase-8 was observed late and only after exposure to very high concentrations of imexon. Confocal microscopy confirmed that caspase-3 is also activated after treatment with imexon. High imexon concentrations activated caspase-3 and -9 at 12 h, while caspase-8 activation occurred only at 48 h. Imexon cytotoxicity was unchanged in three RPMI8226 cell lines with different levels (low, medium and high) of FAS expression. Similarly, the levels of Bcl-2, Bax and Bcl-xL were unchanged in imexon-treated cells. However, Bcl-xL was translocated to the mitochondria. These data suggest that imexon-induced oxidation activates the intrinsic or mitochondrial pathway of apoptosis, involving cytochrome c release and activation of caspase-9 and -3.

Collaboration


Dive into the Margaret E. Tome's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge