Margaret Harr
Children's Hospital of Philadelphia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margaret Harr.
American Journal of Human Genetics | 2015
Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
Human Mutation | 2016
Lijia Huang; Megan R. Vanstone; Taila Hartley; Matthew Osmond; Nick Barrowman; Judith Allanson; Laura D. Baker; Tabib Dabir; Katrina M. Dipple; William B. Dobyns; Jane Estrella; Hanna Faghfoury; Francine P. Favaro; Himanshu Goel; Pernille A. Gregersen; Karen W. Gripp; Art Grix; Maria Leine Guion-Almeida; Margaret Harr; Cindy Hudson; Alasdair G. W. Hunter; John P. Johnson; Shelagh Joss; Amy Kimball; Usha Kini; Antonie D. Kline; Julie Lauzon; Dorte L. Lildballe; Vanesa López-González; Johanna Martinezmoles
Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5–116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and seven microdeletions. Among point mutations, missense substitutions are infrequent (14 out of 76; 18%) relative to stop‐gain (29 out of 76; 38%), and splicing (33 out of 76; 43%) mutations. Where known, mutation origin was de novo in 48 out of 64 individuals (75%), dominantly inherited in 12 out of 64 (19%), and due to proven germline mosaicism in four out of 64 (6%). Highly penetrant clinical features include, microcephaly, first and second arch craniofacial malformations, and hearing loss; esophageal atresia is present in an estimated ∼27%. Microcephaly is virtually universal in childhood, with some adults exhibiting late “catch‐up” growth and normocephaly at maturity. Occasionally reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2).
American Journal of Medical Genetics Part A | 2014
Tara L. Wenger; Margaret Harr; Stefania Ricciardi; Elizabeth J. Bhoj; Avni Santani; Adam Mp; Sarah S. Barnett; Rebecca Ganetzky; Donna M. McDonald-McGinn; Domenica Battaglia; Stefania Bigoni; Angelo Selicorni; Giovanni Sorge; Matteo Della Monica; Francesca Mari; Elena Andreucci; Silvia Romano; Guido Cocchi; Salvatore Savasta; Baris Malbora; Giuseppe Marangi; Livia Garavelli; Marcella Zollino; Elaine H. Zackai
Mowat–Wilson syndrome (MWS) is characterized by moderate to severe intellectual disability and distinctive facial features in association with variable structural congenital anomalies/clinical features including congenital heart disease, Hirschsprung disease, hypospadias, agenesis of the corpus callosum, short stature, epilepsy, and microcephaly. Less common clinical features include ocular anomalies, craniosynostosis, mild intellectual disability, and choanal atresia. These cases may be more difficult to diagnose. In this report, we add 28 MWS patients with molecular confirmation of ZEB2 mutation, including seven with an uncommon presenting feature. Among the “unusual” patients, two patients had clinical features of charge syndrome including choanal atresia, coloboma, cardiac defects, genitourinary anomaly (1/2), and severe intellectual disability; two patients had craniosynostosis; and three patients had mild intellectual disability. Sixteen patients have previously‐unreported mutations in ZEB2. Genotype‐phenotype correlations were suggested in those with mild intellectual disability (two had a novel missense mutation in ZEB2, one with novel splice site mutation). This report increases the number of reported patients with MWS with unusual features, and is the first report of MWS in children previously thought to have CHARGE syndrome. These patients highlight the importance of facial gestalt in the accurate identification of MWS when less common features are present.
American Journal of Human Genetics | 2016
Elizabeth J. Bhoj; Dong Li; Margaret Harr; Shimon Edvardson; Orly Elpeleg; Elizabeth Chisholm; Jane Juusola; Ganka Douglas; Maria J. Guillen Sacoto; Karine Siquier-Pernet; Abdelkrim Saadi; Christine Bole-Feysot; Patrick Nitschke; Alekhya Narravula; Maria Walke; Michele B. Horner; Debra-Lynn Day-Salvatore; Parul Jayakar; Samantha A. Schrier Vergano; Mark A. Tarnopolsky; Madhuri Hegde; Laurence Colleaux; Peter B. Crino; Hakon Hakonarson
Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition.
Journal of Medical Genetics | 2015
Paul Kruszka; Dong Li; Margaret Harr; Nathan R. Wilson; Daniel T. Swarr; Elizabeth M. McCormick; Rosetta M. Chiavacci; Mindy Li; Ariel F. Martinez; Rachel A. Hart; Donna M. McDonald-McGinn; Matthew A. Deardorff; Marni J. Falk; Judith Allanson; Cindy Hudson; John P. Johnson; Irfan Saadi; Hakon Hakonarson; Maximilian Muenke; Elaine H. Zackai
Background Opitz G/BBB syndrome is a heterogeneous disorder characterised by variable expression of midline defects including cleft lip and palate, hypertelorism, laryngealtracheoesophageal anomalies, congenital heart defects, and hypospadias. The X-linked form of the condition has been associated with mutations in the MID1 gene on Xp22. The autosomal dominant form has been linked to chromosome 22q11.2, although the causative gene has yet to be elucidated. Methods and results In this study, we performed whole exome sequencing on DNA samples from a three-generation family with characteristics of Opitz G/BBB syndrome with negative MID1 sequencing. We identified a heterozygous missense mutation c.1189A>C (p.Thr397Pro) in SPECC1L, located at chromosome 22q11.23. Mutation screening of an additional 19 patients with features of autosomal dominant Opitz G/BBB syndrome identified a c.3247G>A (p.Gly1083Ser) mutation segregating with the phenotype in another three-generation family. Conclusions Previously, SPECC1L was shown to be required for proper facial morphogenesis with disruptions identified in two patients with oblique facial clefts. Collectively, these data demonstrate that SPECC1L mutations can cause syndromic forms of facial clefting including some cases of autosomal dominant Opitz G/BBB syndrome and support the original linkage to chromosome 22q11.2.
Genetics in Medicine | 2018
Jennifer J. Johnston; Jasper J. van der Smagt; Jill A. Rosenfeld; Alistair T. Pagnamenta; Abdulrahman Alswaid; Eva H. Baker; Edward Blair; Guntram Borck; Julia Brinkmann; William J. Craigen; Vu Chi Dung; Lisa T. Emrick; David B. Everman; Koen L.I. van Gassen; Suleyman Gulsuner; Margaret Harr; Mahim Jain; Alma Kuechler; Kathleen A. Leppig; Donna M. McDonald-McGinn; Ngoc Thi Bich Can; Amir Peleg; Elizabeth Roeder; R. Curtis Rogers; Lena Sagi-Dain; Julie C. Sapp; Alejandro A. Schäffer; Denny Schanze; Helen Stewart; Jenny C. Taylor
PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.
American Journal of Medical Genetics Part A | 2015
Elizabeth J. Bhoj; Dong Li; Margaret Harr; Lifeng Tian; Tiancheng Wang; Yan Zhao; Haijun Qiu; Cecilia Kim; Jodi D. Hoffman; Hakon Hakonarson; Elaine H. Zackai
Teebi hypertelorism syndrome is a rare autosomal dominant disorder that has eluded a molecular etiology since first described in 1987. Here we report on two unrelated families with a Teebi hypertelorism‐like syndrome and Teebi hypertelorism phenotype who have missense mutations in Sperm Antigen With Calponin Homology And Coiled‐Coil Domains (SPECC1L), previously associated with oblique facial clefting and Opitz G/BBB syndrome. The first patient and his affected mother were previously‐reported by Hoffman et al. in this journal as a new syndrome resembling Teebi hypertelorism and Aarskog syndromes in 2007. This patient had hypertelorism, sagittal and coronal craniosynostosis, ptosis, natal teeth, unusual umbilicus, shawl scrotum, small hands, and feet, with grossly normal development. Our second patient had classic Teebi hypertelorism syndrome with hypertelorism and a giant umbilical hernia. Patient one and his affected mother had a c.1260G>C:p.E420D variant and patient two had a de novo c.1198_1203delATACAC:p.I400_H401del variant in SPECC1L. We review the phenotypic findings in the previously‐published Teebi hypertelorism syndrome patients, and the Opitz G/BBB patients with SPECC1L mutations. In addition we emphasize the findings of aortic root dilation and craniosynostosis in these patients, which should be considered in their management.
Journal of Personalized Medicine | 2018
Robyn L Fossey; David Kochan; Erin M Winkler; Joel E. Pacyna; Janet E. Olson; Stephen N. Thibodeau; John J. Connolly; Margaret Harr; Meckenzie A. Behr; Cynthia A. Prows; Beth L. Cobb; Melanie F. Myers; Nancy Leslie; Bahram Namjou-Khales; Hila Milo Rasouly; Julia Wynn; Alexander Fedotov; Wendy K. Chung; Ali G. Gharavi; Janet L. Williams; Lynn Pais; Ingrid A. Holm; Sharon Aufox; Maureen E. Smith; Aaron Scrol; Kathleen A. Leppig; Gail P. Jarvik; Georgia L. Wiesner; Rongling Li; Mary Stroud
We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants. We examined each site’s research protocols, informed-consent materials, and interactions with IRB staff. Research staff at each site completed questionnaires regarding their IRB interactions. The time to prepare protocols for IRB submission, number of revisions and time to approval ranged from 10–261 days, 0–11, and 11–90 days, respectively. IRB recommendations related to the readability of informed consent materials, specifying the full range of potential risks, providing options for receiving limited results or withdrawal, sharing of information with family members, and establishing the mechanisms to answer participant questions. IRBs reviewing studies that involve the return of results from genomic sequencing have a diverse array of concerns, and anticipating these concerns can help investigators to more effectively engage IRBs.
Molecular Genetics & Genomic Medicine | 2015
Rebecca Ganetzky; Erin M. Finn; Atrish Bagchi; Ornella Zollo; Laura K. Conlin; Matthew A. Deardorff; Margaret Harr; Michael A. Simpson; John A. McGrath; Elaine H. Zackai; Mark A. Lemmon; Neal Sondheimer
The epidermal growth factor receptor (EGFR) is part of a large family of receptors required for communicating extracellular signals through internal tyrosine kinases. Epidermal growth factor (EGF) signaling is required for tissue development, whereas constitutive activation of this signaling pathway is associated with oncogenic transformation. We identified homozygous c.1283G>A (p.Gly428Asp) mutations in the extracellular domain of EGFR in two siblings. The children were born prematurely, had abnormalities in skin and hair, suffered multisystem organ failure, and died in the neonatal period from intestinal perforation. EGF failed to induce mutated receptor phosphorylation in patient‐derived fibroblasts and activation of downstream targets was suppressed. The heterologously expressed extracellular domain was impaired in stability and the binding of EGF. Cells from the affected patient undergo early senescence with accelerated expression of β‐galactosidase and shortened telomeres at all passages when compared to controls. A comparison of homozygous inherited regions from a separate report of a patient from the same ethnic background and EGFR genotype confirms the pathogenicity of EGFR mutations in congenital disease.
American Journal of Medical Genetics Part A | 2017
Minjie Luo; Jinbo Fan; Tara L. Wenger; Margaret Harr; Melissa Racobaldo; Surabhi Mulchandani; Holly Dubbs; Elaine H. Zackai; Nancy B. Spinner; Laura K. Conlin
Autism spectrum disorder (ASD) is a genetically heterogeneous group of disorders characterized by impairments in social communication and restricted interests. Though some patients with ASD have an identifiable genetic cause, the cause of most ASD remains elusive. Many ASD susceptibility loci have been identified through clinical studies. We report two patients with syndromic ASD and persistent gastrointestinal issues who carry de novo deletions involving the CMIP gene detected by genome‐wide SNP microarray and fluorescence in situ hybridization (FISH) analysis. Patient 1 has a 517 kb deletion within 16q23.2q23.3 including the entire CMIP gene. Patient 2 has a 1.59 Mb deletion within 16q23.2q23.3 that includes partial deletion of CMIP in addition to 12 other genes, none of which have a known connection to ASD or other clinical phenotypes. The deletion of CMIP is rare in general population and was not found among a reference cohort of approximately 12,000 patients studied in our laboratory who underwent SNP array analysis for various indications. A 280 kb de novo deletion containing the first 3 exons of CMIP was reported in one patient who also demonstrated ASD and developmental delay. CMIP has previously been identified as a susceptibility locus for specific language impairment (SLI). It is notable that both patients in this study had significant gastrointestinal issues requiring enteral feedings, which is unusual for patients with ASD, in addition to unusually elevated birth length, further supporting a shared causative gene. These findings suggest that CMIP haploinsufficiency is the likely cause of syndromic ASD in our patients.