Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret I. Hall is active.

Publication


Featured researches published by Margaret I. Hall.


Brain Behavior and Evolution | 2010

The nocturnal bottleneck and the evolution of mammalian vision.

Christopher P. Heesy; Margaret I. Hall

Evidence from the early paleontological record of mammalian evolution has often been interpreted as supporting the idea that mammals were nocturnal for most of their early history. Multiple features of extant mammal sensory systems, such as evolutionary modifications to the light-regulated circadian system, photoreceptor complement, and retinal morphology, support this nocturnal hypothesis for mammalian evolution. Here, we synthesize data on eye shape and orbit orientation in mammals as these data compare to other amniotes. Most mammals differ from other amniotes in retaining an eye design optimized for high visual sensitivity, with the requisite reduction in acuity, which is typically restricted to scotopically (i.e. low light) adapted amniotes. Mammals also possess the more convergent (similarly facing) orbits and, on average, the largest binocular visual fields among amniotes. Based on our analyses, we propose that extant mammals retain a scotopic eye design as well as expanded binocular zones as a result of their nocturnal origin. Only anthropoid primates notably differ from general mammalian patterns, and possibly have evolved an eye shape more typical of the ancestral amniote condition.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2008

Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds

Andrew N. Iwaniuk; Christopher P. Heesy; Margaret I. Hall; Douglas R. Wylie

In mammals, species with more frontally oriented orbits have broader binocular visual fields and relatively larger visual regions in the brain. Here, we test whether a similar pattern of correlated evolution is present in birds. Using both conventional statistics and modern comparative methods, we tested whether the relative size of the Wulst and optic tectum (TeO) were significantly correlated with orbit orientation, binocular visual field width and eye size in birds using a large, multi-species data set. In addition, we tested whether relative Wulst and TeO volumes were correlated with axial length of the eye. The relative size of the Wulst was significantly correlated with orbit orientation and the width of the binocular field such that species with more frontal orbits and broader binocular fields have relatively large Wulst volumes. Relative TeO volume, however, was not significant correlated with either variable. In addition, both relative Wulst and TeO volume were weakly correlated with relative axial length of the eye, but these were not corroborated by independent contrasts. Overall, our results indicate that relative Wulst volume reflects orbit orientation and possibly binocular visual field, but not eye size.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Eye shape and the nocturnal bottleneck of mammals

Margaret I. Hall; Jason M. Kamilar; E. Christopher Kirk

Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal ‘bottleneck’ in the early evolution of crown mammals.


Journal of Anatomy | 2008

The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds.

Margaret I. Hall

Activity pattern, or the time of day when an animal is awake and active, is highly associated with that animals ecology. There are two principal activity patterns: diurnal, or awake during the day in a photopic, or high light level, environment; and nocturnal, awake at night in scotopic, or low light level, conditions. Nocturnal and diurnal birds exhibit characteristic eye shapes associated with their activity pattern, with nocturnal bird eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and diurnal birds optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. The current study had three aims: (1) to quantify the nature of the relationship between the avian eye and its associated bony anatomy, the orbit and the sclerotic ring; (2) to investigate how activity pattern is reflected in that bony anatomy; and (3) to identify how much bony anatomy is required to interpret activity pattern reliably for a bird that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct avian activity patterns would be useful in making palaeoecological interpretations. Here eye, orbit and sclerotic ring morphologies of 140 nocturnal and diurnal bird species are analysed in a phylogenetic context. Although there is a close relationship between the avian eye and orbit, activity pattern can only be reliably interpreted for bony‐only specimens, such as a fossil, that include both measurements of the sclerotic ring and orbit depth. Any missing data render the fossil analysis inaccurate, including fossil specimens that are flat and therefore do not have an orbit depth available. For example, activity pattern cannot be determined with confidence for Archaeopteryx lithographica, which has a complete sclerotic ring but no orbit depth measurement. Many of the bird fossils currently available that retain a good sclerotic ring tend to be flat specimens, while three‐dimensionally preserved bird fossils tend not to have a well‐preserved sclerotic ring or a well‐defined optic foramen, necessary for delimiting the orbit depth.


Journal of Vision | 2012

A novel method for comparative analysis of retinal specialization traits from topographic maps

Bret A. Moore; Jason M. Kamilar; Shaun P. Collin; Olaf R. P. Bininda-Emonds; Nathaniel J. Dominy; Margaret I. Hall; Christopher P. Heesy; Soenke Johnsen; Thomas J. Lisney; Ellis R. Loew; Gillian L. Moritz; Saul S. Nava; Eric J. Warrant; Kara E. Yopak; Esteban Fernández-Juricic

Vertebrates possess different types of retinal specializations that vary in number, size, shape, and position in the retina. This diversity in retinal configuration has been revealed through topographic maps, which show variations in neuron density across the retina. Although topographic maps of about 300 vertebrates are available, there is no method for characterizing retinal traits quantitatively. Our goal is to present a novel method to standardize information on the position of the retinal specializations and changes in retinal ganglion cell (RGC) density across the retina from published topographic maps. We measured the position of the retinal specialization using two Cartesian coordinates and the gradient in cell density by sampling ganglion cell density values along four axes (nasal, temporal, ventral, and dorsal). Using this information, along with the peak and lowest RGC densities, we conducted discriminant function analyses (DFAs) to establish if this method is sensitive to distinguish three common types of retinal specializations (fovea, area, and visual streak). The discrimination ability of the model was higher when considering terrestrial (78%-80% correct classification) and aquatic (77%-86% correct classification) species separately than together. Our method can be used in the future to test specific hypotheses on the differences in retinal morphology between retinal specializations and the association between retinal morphology and behavioral and ecological traits using comparative methods controlling for phylogenetic effects.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009

Optic Foramen Morphology and Activity Pattern in Birds

Margaret I. Hall; Andrew N. Iwaniuk; Cristián Gutiérrez-Ibáñez

The optic nerve is the sole output of visual information from the ganglion cell layer of the retina to the brain in vertebrates. The size of the optic nerve is predicted to be closely associated with activity pattern, and, in many birds, the size of the optic foramen approximates the size of the optic nerve. Specifically, nocturnal species should have relatively smaller optic foramina than diurnal species because of differences in retinal pooling between activity patterns. If optic foramen morphology varies predictably with activity pattern in birds, this variable may be useful for interpreting activity pattern for birds that do not have soft tissue available for study, specifically for fossils. Across 177 families (from 27 orders), we describe four different optic foramen morphologies, only one of which corresponds well with the size of the optic nerve and is therefore appropriate for activity pattern analyses. Here, we test our hypothesis that nocturnal species will have relatively smaller optic foramina than diurnal species, across all species that we measured that have a discrete optic foramen. Regression analyses using species as independent data points and using comparative methods yielded significant differences in optic foramen size between nocturnal and diurnal species relative to three variables: head length, orbit depth, and sclerotic ring inner diameter. Nocturnal species consistently exhibit significantly smaller relative optic foramen diameters than diurnal species. Our results indicate that optic foramen diameter, in combination with either the sclerotic ring or the orbit diameter, can be used to predict activity pattern. Anat Rec, 2009.


Science | 2011

Comment on “Nocturnality in Dinosaurs Inferred from Scleral Ring and Orbit Morphology”

Margaret I. Hall; E. Christopher Kirk; Jason M. Kamilar; Matthew T. Carrano

Schmitz and Motani (Reports, 6 May 2011, p. 705) claimed to definitively reconstruct activity patterns of Mesozoic archosaurs using the anatomy of the orbit and scleral ring. However, we find serious flaws in the data, methods, and interpretations of this study. Accordingly, it is not yet possible to reconstruct the activity patterns of most fossil archosaurs with a high degree of confidence.


Evolution of Nervous Systems | 2017

Structure and Function of Regional Specializations in the Vertebrate Retina

Bret A. Moore; L.P. Tyrell; Jason M. Kamilar; Shaun P. Collin; Nathaniel J. Dominy; Margaret I. Hall; Christopher P. Heesy; Thomas J. Lisney; Ellis R. Loew; Gillian L. Moritz; S.S. Nava; Eric J. Warrant; Kara Shaw; Esteban Fernández-Juricic

Visual sensory demands vary substantially across vertebrates. Different visual sensory components have evolved to meet these sensory demands and enhance visual behavioral performance. One of these components is the retinal specialization, which is a portion of the retina with generally high ganglion cell densities, which increase spatial resolving power. Retinal specializations are relevant from a functional perspective because animals can align these “acute zones” with objects of interest within a localized region of their visual space, consequently affecting different behavioral dimensions. In this chapter, we reviewed the different types of retinal specializations found in vertebrates (retinal area , fovea, visual streak, radial anisotropy, area gigantocellularis) by discussing the different hypotheses proposed over decades to explain their function. Empirical tests on the functional properties of these different retinal specializations have been limited, which constrains our ability to understand the functional evolution of the vertebrate eye. We derive specific predictions from each of the hypotheses put forward to identify their degree of overlap. Finally, we provide some future directions as to how to test these functional hypotheses by integrating physiological and behavioral approaches. Testing these functional hypotheses will enhance our understanding of the relationship between the eye and the physical environment, and ultimately the visual ecology of vertebrates.


Clinical Anatomy | 2016

A functional and clinical reinterpretation of human perineal neuromuscular anatomy: Application to sexual function and continence

Jeffrey H. Plochocki; José R. Rodriguez-Sosa; Brent Adrian; Saul A. Ruiz; Margaret I. Hall

Modern anatomical and surgical references illustrate perineal muscles all innervated by branches of the pudendal nerve but still organized into anatomically distinct urogenital and anal triangles with muscles inserting onto a central perineal body. However, these conflict with the anatomy commonly encountered during dissection. We used dissections of 43 human cadavers to characterize the anatomical organization of the human perineum and compare our findings to standard references. We found bulbospongiosus and the superficial portion of the external anal sphincter (EAS) were continuous anatomically with a common innervation in 92.3% of specimens. The superficial transverse perineal muscle inserted anterior and lateral to the midline, interdigitating with bulbospongiosus. The three EAS subdivisions were anatomically discontinuous. Additionally, in 89.2% of our sample the inferior rectal nerve emerged as a branch of S3 and S4 distinct from the pudendal nerve and innervated only the subcutaneous EAS. Branches of the perineal nerve innervated bulbospongiosus and the superficial EAS and nerve to levator ani innervated the deep EAS. In conclusion, we empirically demonstrate important and clinically relevant differences with perineal anatomy commonly described in standard texts. First, independent innervation to the three portions of EAS suggests the potential for functional independence. Second, neuromuscular continuity between bulbospongiosus and superficial EAS suggests the possibility of shared or overlapping function of the urogenital and anal triangles. Clin. Anat. 29:1053–1058, 2016.


Clinical Anatomy | 2016

A Functional and Clinical Reinterpretation of Human Perineal Neuromuscular Anatomy

Jeffrey H. Plochocki; José R. Rodriguez-Sosa; Brent Adrian; Saul A. Ruiz; Margaret I. Hall

Modern anatomical and surgical references illustrate perineal muscles all innervated by branches of the pudendal nerve but still organized into anatomically distinct urogenital and anal triangles with muscles inserting onto a central perineal body. However, these conflict with the anatomy commonly encountered during dissection. We used dissections of 43 human cadavers to characterize the anatomical organization of the human perineum and compare our findings to standard references. We found bulbospongiosus and the superficial portion of the external anal sphincter (EAS) were continuous anatomically with a common innervation in 92.3% of specimens. The superficial transverse perineal muscle inserted anterior and lateral to the midline, interdigitating with bulbospongiosus. The three EAS subdivisions were anatomically discontinuous. Additionally, in 89.2% of our sample the inferior rectal nerve emerged as a branch of S3 and S4 distinct from the pudendal nerve and innervated only the subcutaneous EAS. Branches of the perineal nerve innervated bulbospongiosus and the superficial EAS and nerve to levator ani innervated the deep EAS. In conclusion, we empirically demonstrate important and clinically relevant differences with perineal anatomy commonly described in standard texts. First, independent innervation to the three portions of EAS suggests the potential for functional independence. Second, neuromuscular continuity between bulbospongiosus and superficial EAS suggests the possibility of shared or overlapping function of the urogenital and anal triangles. Clin. Anat. 29:1053–1058, 2016.

Collaboration


Dive into the Margaret I. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey H. Plochocki

Arizona College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saul A. Ruiz

Arizona College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar

Brent Adrian

Arizona College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Christopher Kirk

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge