Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret J. Couvillon is active.

Publication


Featured researches published by Margaret J. Couvillon.


PLOS ONE | 2014

Waggle dance distances as integrative indicators of seasonal foraging challenges

Margaret J. Couvillon; Roger Schürch; Francis L. W. Ratnieks

Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We “eavesdropped” on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable.


Insectes Sociaux | 2010

Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters

Margaret J. Couvillon; Anna Dornhaus

In bumble bees (Bombus spp.), where workers within the same colony exhibit up to a tenfold difference in mass, labor is divided by body size. Current adaptive explanations for this important life history feature are unsatisfactory. Within the colony, what is the function of the smaller workers? Here, we report on the differential robustness to starvation of small and large worker bumble bees (Bombus impatiens); when nectar is scarce, small workers remain alive significantly longer than larger workers. The presence of small workers, and size variation in general, might act as insurance against times of nectar shortage. These data may provide a novel, adaptive explanation, independent of division of labor, for size polymorphism within the worker caste.


Current Biology | 2014

Dancing Bees Communicate a Foraging Preference for Rural Lands in High-Level Agri-Environment Schemes

Margaret J. Couvillon; Roger Schürch; Francis L. W. Ratnieks

Since 1994, more than €41 billion has been spent in the European Union on agri-environment schemes (AESs), which aim to mitigate the effects of anthropomorphic landscape changes via financial incentives for land managers to encourage environmentally friendly practices [1-6]. Surprisingly, given the substantial price tag and mandatory EU member participation [2], there is either a lack of [1] or mixed [1, 2, 7] evidence-based support for the schemes. One novel source of data to evaluate AESs may be provided by an organism that itself may benefit from them. Honeybees (Apis mellifera), important pollinators for crops and wildflowers [8, 9], are declining in parts of the world from many factors, including loss of available forage from agricultural intensification [10-13]. We analyzed landscape-level honeybee foraging ecology patterns over two years by decoding 5,484 waggle dances from bees located in the center of a mixed, urban-rural 94 km(2) area, including lands under government-funded AESs. The waggle dance, a unique behavior performed by successful foragers, communicates to nestmates the most profitable foraging locations [14-16]. After correcting for distance, dances demonstrate that honeybees possess a significant preference for rural land managed under UK Higher Level AESs and a significant preference against rural land under UK Organic Entry Level AESs. Additionally, the two most visited areas contained a National and Local Nature Reserve, respectively. Our study demonstrates that honeybees, with their great foraging range and sensitive response to forage quality, can be used as bioindicators to monitor large areas and provide information relevant to better environmental management.


Biology Letters | 2007

Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer

Margaret J. Couvillon; Jamie P Caple; Samuel L Endsor; Martin H. Kärcher; Trudy E Russell; Darren E Storey; Francis L. W. Ratnieks

In recognition, discriminators use sensory information to make decisions. For example, honeybee (Apis mellifera) entrance guards discriminate between nest-mates and intruders by comparing their odours with a template of the colony odour. Comb wax plays a major role in honeybee recognition. We measured the rejection rates of nest-mate and non-nest-mate worker bees by entrance guards before and after a unidirectional transfer of wax comb from a ‘comb donor’ hive to a ‘comb receiver’ hive. Our results showed a significant effect that occurred in one direction. Guards in the comb receiver hive became more accepting of non-nest-mates from the comb donor hive (rejection decreased from 70 to 47%); however, guards in the comb donor hive did not become more accepting of bees from the comb receiver hive. These data strongly support the hypothesis that the transfer of wax comb increases the acceptance of non-nest-mates not by changing the odour of the bees, but by changing the template used by guards.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Location, location, location: larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens).

Margaret J. Couvillon; Anna Dornhaus

Social insects display task-related division of labour. In some species, division of labour is related to differences in body size, and worker caste members display morphological adaptations suited for particular tasks. Bumble-bee workers (Bombus spp.) can vary in mass by eight- to tenfold within a single colony, which previous work has linked to division of labour. However, little is known about the proximate mechanism behind the production of this wide range of size variation within the worker caste. Here, we quantify the larval feeding in Bombus impatiens in different nest zones of increasing distance from the centre. There was a significant difference in the number of feedings per larva across zones, with a significant decrease in feeding rates as one moved outwards from the centre of the nest. Likewise, the diameter of the pupae in the peripheral zones was significantly smaller than that of pupae in the centre. Therefore, we conclude that the differential feeding of larvae within a nest, which leads to the size variation within the worker caste, is based on the location of brood clumps. Our work is consistent with the hypothesis that some larvae are ‘forgotten’, providing a possible first mechanism for the creation of size polymorphism in B. impatiens.


Insectes Sociaux | 2012

The dance legacy of Karl von Frisch

Margaret J. Couvillon

Karl von Frisch published “Die Tänze der Bienen” in 1946, which demonstrated that successful honey bee foragers perform a stereotyped dance to communicate the location of valuable resources to her nestmates. This discovery proved to be the starting point of many areas of investigation. Here I review some recent advancement in our understanding of the waggle dance.


Behavioral Ecology and Sociobiology | 2008

Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable–absent” recognition system

Margaret J. Couvillon; Francis L. W. Ratnieks

In group-level recognition, discriminators use sensory information to distinguish group members and non-members. For example, entrance guards in eusocial insect colonies discriminate nestmates from intruders by comparing their odour with a template of the colony odour. Despite being a species-rich group of eusocial bees closely related to the honey bees, stingless bee nestmate recognition is a relatively little-studied area. We studied Frieseomelitta varia, a common Brazilian species of stingless bee known as marmelada. By measuring the rejection rates of nestmate and non-nestmate worker bees by guards, we were able to show that guards became significantly less accepting (from 91 to 46%) of nestmates that had acquired odour cues from non-nestmate workers; however, guards did not become significantly more accepting (from 31 to 42%) of non-nestmates that had acquired equivalent amounts of odour cues from the guard’s nestmates. These data strongly suggest that guards use an “undesirable–absent” system in recognition, whereby incoming conspecific workers are only accepted if undesirable cues are absent, despite the presence of desirable cues. We suggest that an undesirable–absent system is adaptive because robbing by conspecifics may be an important selective factor in F. varia, which would lead to selection for a non-permissive acceptance strategy by guards.


Ecological Entomology | 2010

Ontogeny of worker body size distribution in bumble bee (Bombus impatiens) colonies

Margaret J. Couvillon; Jennifer M. Jandt; Nhi Duong; Anna Dornhaus

1. Bumble bees exhibit worker size polymorphisms; highly related workers within a colony may vary up to 10‐fold in body mass. As size variation is an important life history feature in bumble bees, the distribution of body sizes within the colony and how it fluctuates over the colony cycle were analysed.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2013

Incorporating variability in honey bee waggle dance decoding improves the mapping of communicated resource locations

Roger Schürch; Margaret J. Couvillon; Dominic D. R. Burns; Kiah Tasman; David Waxman; Francis L. W. Ratnieks

Honey bees communicate to nestmates locations of resources, including food, water, tree resin and nest sites, by making waggle dances. Dances are composed of repeated waggle runs, which encode the distance and direction vector from the hive or swarm to the resource. Distance is encoded in the duration of the waggle run, and direction is encoded in the angle of the dancer’s body relative to vertical. Glass-walled observation hives enable researchers to observe or video, and decode waggle runs. However, variation in these signals makes it impossible to determine exact locations advertised. We present a Bayesian duration to distance calibration curve using Markov Chain Monte Carlo simulations that allows us to quantify how accurately distance to a food resource can be predicted from waggle run durations within a single dance. An angular calibration shows that angular precision does not change over distance, resulting in spatial scatter proportional to distance. We demonstrate how to combine distance and direction to produce a spatial probability distribution of the resource location advertised by the dance. Finally, we show how to map honey bee foraging and discuss how our approach can be integrated with Geographic Information Systems to better understand honey bee foraging ecology.


Biology Open | 2012

Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding

Margaret J. Couvillon; Fiona C. Riddell Pearce; Elisabeth L. Harris-Jones; Amanda M. Kuepfer; Samantha J. Mackenzie-Smith; Laura A. Rozario; Roger Schürch; Francis L. W. Ratnieks

Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.

Collaboration


Dive into the Margaret J. Couvillon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge