Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret Keighren is active.

Publication


Featured researches published by Margaret Keighren.


Cell | 2012

Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development

Martin A. M. Reijns; Björn Rabe; Rachel E. Rigby; Pleasantine Mill; Katy R. Astell; Laura Lettice; Shelagh Boyle; Andrea Leitch; Margaret Keighren; Fiona Kilanowski; Paul S. Devenney; David Sexton; Graeme Grimes; Ian J. Holt; Robert E. Hill; Martin S. Taylor; Kirstie Lawson; Julia R. Dorin; Andrew P. Jackson

Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Developmental Dynamics | 2002

Clonal analysis of Patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium

J. Martin Collinson; Lucy Morris; Alasdair I. Reid; Thaya Ramaesh; Margaret Keighren; Jean H. Flockhart; Robert E. Hill; Seong-Seng Tan; Kanna Ramaesh; Baljean Dhillon; John West

Patterns of growth and cell movement in the developing and adult corneal epithelium were investigated by analysing clonal patches of LacZ‐expressing cells in chimeric and X‐inactivation mosaic mice. It was found that cell proliferation throughout the basal corneal epithelium during embryogenesis and early postnatal life creates a disordered mosaic pattern of LacZ+ clones that contrasts with patterns of proliferation and striping produced during the later embryonic stages of retinal pigmented epithelium development. The early mosaic pattern in the corneal epithelium is replaced in the first 12 postnatal weeks by an ordered pattern of radial stripes or sectors that reflects migration without mixing of the progeny of clones of limbal stem cells. In contrast to previous assumptions, it was found that maturation of the activity of limbal stem cells and the pattern of migration of their progeny are delayed for several weeks postnatally. No evidence was found for immigration of the progeny of stem cells until the 5th postnatal week. There are approximately 100 clones of limbal stem cells initially, and clones are lost during postnatal life. Our studies provide a new assay for limbal and corneal defects in mutant mice.


American Journal of Human Genetics | 2011

Human and Mouse Mutations in WDR35 Cause Short-Rib Polydactyly Syndromes Due to Abnormal Ciliogenesis

Pleasantine Mill; Paul J. Lockhart; Elizabeth Fitzpatrick; Hayley Mountford; Emma A. Hall; Martin A. M. Reijns; Margaret Keighren; Melanie Bahlo; Catherine J. Bromhead; Peter S. Budd; Salim Aftimos; Martin B. Delatycki; Ravi Savarirayan; Ian J. Jackson; David J. Amor

Defects in cilia formation and function result in a range of human skeletal and visceral abnormalities. Mutations in several genes have been identified to cause a proportion of these disorders, some of which display genetic (locus) heterogeneity. Mouse models are valuable for dissecting the function of these genes, as well as for more detailed analysis of the underlying developmental defects. The short-rib polydactyly (SRP) group of disorders are among the most severe human phenotypes caused by cilia dysfunction. We mapped the disease locus from two siblings affected by a severe form of SRP to 2p24, where we identified an in-frame homozygous deletion of exon 5 in WDR35. We subsequently found compound heterozygous missense and nonsense mutations in WDR35 in an independent second case with a similar, severe SRP phenotype. In a mouse mutation screen for developmental phenotypes, we identified a mutation in Wdr35 as the cause of midgestation lethality, with abnormalities characteristic of defects in the Hedgehog signaling pathway. We show that endogenous WDR35 localizes to cilia and centrosomes throughout the developing embryo and that human and mouse fibroblasts lacking the protein fail to produce cilia. Through structural modeling, we show that WDR35 has strong homology to the COPI coatamers involved in vesicular trafficking and that human SRP mutations affect key structural elements in WDR35. Our report expands, and sheds new light on, the pathogenesis of the SRP spectrum of ciliopathies.


PLOS Genetics | 2009

Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation

Pleasantine Mill; Angela Weishan Lee; Yuko Fukata; Ryouhei Tsutsumi; Masaki Fukata; Margaret Keighren; Rebecca M. Porter; Lisa McKie; Ian Smyth; Ian J. Jackson

Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear β-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.


Histochemical Journal | 1993

Analysis of cell ploidy in histological sections of mouse tissues by DNA-DNA in situ hybridization with digoxigenin-labelled probes

Margaret Keighren; John B. West

SummaryDNA-DNA in situ hybridization, with two digoxigenin-labelled, chromosome-specific DNA probes, was used to determine the number of copies of a given chromosome in interphase nuclei and so identify putatively polyploid nuclei in histological sections of several mouse tissues. One hybridization site per diploid genome was expected for tissues with hemizygous markers: male mice hybridized with a Y chromosome probe (pY353/B) or hemizygous transgenic mice hybridized with a β-globin probe (pMβ02). Nuclei with more than one hybridization site were considered putative polyploids. Three groups of experiments were undertaken: (1) evaluation of the method, using mouse liver sections; (2) studies of tissues already known to contain polyploid nuclei, and (3) studies that resulted in the discovery that the mouse ovary contains polyploid nuclei. First, control studies showed that the ability to detect the target DNA sequences was affected by section thickness. Studies of nuclear ploidy in the developing mouse liver revealed a pattern similar to that established by previous studies using DNA content as a criterion for ploidy. At birth, only about 5% of the liver nuclei were polyploid; this increased to 10–15% by 10–20 days and was followed by a sharp increase in the frequency of tetraploid nuclei between 20 and 40 days (to about 35%) and a more gradual increase in higher order polyploid nuclei. Secondly, this technique was used to confirm that polyploid (mostly tetraploid) nuclei were present in the bladder epithelium, heart, uterine decidua and placental trophoblast. Higher order polyploidy was seen in large bone marrow cells (megakaryocytes) but not in the even larger trophoblast giant cells of the placenta, thus confirming previous claims that these cells are polytene rather than polyploid. Thirdly, putatively tetraploid nuclei were found in the ovarian follicle and corpus luteum. As far as we are aware, this is the first time polyploid nuclei have been reported for the mouse ovary.


PLOS Genetics | 2013

Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes

Emma A. Hall; Margaret Keighren; Matthew J. Ford; Tracey Davey; Andrew P. Jarman; Lee B. Smith; Ian J. Jackson; Pleasantine Mill

Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1Gt/Gt). Surprisingly, Azi1Gt/Gt MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease.


Journal of Molecular Biology | 1980

Frameshift mutations affecting the N-terminal sequence of Neurospora NADP-specific glutamate dehydrogenase

M.A.M. Siddig; J.A. Kinsey; John R. S. Fincham; Margaret Keighren

Abstract A series of ultraviolet light-induced revertants from the mutant am6, mapping at the left-hand (“N-terminal”) end of the structural gene for NADP-specific glutamate dehydrogenase, have been shown to have amino acid substitutions in the N-terminal tryptic peptide. Only a few were found to have the wild-type sequence; the great majority had the replacement Ser5 → Pro and most had a further altered sequence extending one, two, three or four residues to the left. The most extensively altered revertant had a sequence with the extra residue Met at the N-terminus: Met-Leu-Thr-Phe-Pro-Pro- instead of the normal sequence N-acetyl-Ser-Asn-Leu-Pro-Ser-. The results are interpreted as meaning that am6 is a frameshift mutant, with the insertion of a base in the Ser5 codon, and that the revertants are all deletions at various positions to the left. Most of the revertants can be explained as single-base deletions, but some appear to have arisen by a more complex type of event. One revertant is a four-base deletion. The longest double-frameshifted sequence, on the basis of the simplest hypothesis as to its origin, defines the first 17 bases of the messenger RNA coding sequence. The altered sequences do not appear to affect the enzyme activity, except that they do, to different extents depending on the sequence, affect its sensitivity to heat.


Cell Cycle | 2014

Fucci2a: A bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice

Richard L. Mort; Matthew J. Ford; Asako Sakaue-Sawano; Nils O. Lindström; Angela Casadio; Adam Douglas; Margaret Keighren; Peter Hohenstein; Atsushi Miyawaki; Ian J. Jackson

Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes—there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.


PLOS ONE | 2010

Involvement of the Melanocortin-1 Receptor in Acute Pain and Pain of Inflammatory but Not Neuropathic Origin

Ada Delaney; Margaret Keighren; Susan M. Fleetwood-Walker; Ian J. Jackson

Background Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R. Methodology and Principal Findings We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain. Conclusions We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin.


Development Growth & Differentiation | 1997

Quantitative and spatial information on the composition of chimaeric fetal mouse eyes from single histological sections

John B. West; Benjamin A. Hodson; Margaret Keighren

The spatial distribution of cells in chimaeric tissues, composed of two genotypes, provides insights into the extent of cell mixing during development and growth. However, direct measurement of patch sizes is not usually meaningful because, when the proportion of one genotype is high, a single patch may encompass several adjacent coherent clones of like genotype (clone aggregation). Two previously used methods of comparing patch lengths were evaluated to overcome this problem. The corrected mean patch length (corrected for the predicted effects of random clone aggregation) is a more useful summary statistic than the median patch length of the minor genotype, because its use is not restricted to grossly unbalanced chimaeras, but its validity has been questioned. The two methods gave almost identical numerical summaries of patch sizes in the retinal pigment epithelium of fetal chimaeras, thereby validating the use of the corrected mean patch length for this tissue. The present study also showed that the corrected patch length was unaffected by the presence of cells hemizygous for the TgN(Hbb‐b1)83Clo transgene and that the proportion of pigmented cells in a single histological section was representative of the overall composition of the chimaeric fetus.

Collaboration


Dive into the Margaret Keighren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B. West

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa McKie

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. West

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge