Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret L. Gardel is active.

Publication


Featured researches published by Margaret L. Gardel.


Annual Review of Cell and Developmental Biology | 2010

Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration

Margaret L. Gardel; Ian C. Schneider; Yvonne Aratyn-Schaus; Clare M. Waterman

Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.


Journal of Cell Biology | 2008

Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed

Margaret L. Gardel; Benedikt Sabass; Lin Ji; Gaudenz Danuser; Ulrich Schwarz; Clare M. Waterman

How focal adhesions (FAs) convert retrograde filamentous actin (F-actin) flow into traction stress on the extracellular matrix to drive cell migration is unknown. Using combined traction force and fluorescent speckle microscopy, we observed a robust biphasic relationship between F-actin speed and traction force. F-actin speed is inversely related to traction stress near the cell edge where FAs are formed and F-actin motion is rapid. In contrast, larger FAs where the F-actin speed is low are marked by a direct relationship between F-actin speed and traction stress. We found that the biphasic switch is determined by a threshold F-actin speed of 8–10 nm/s, independent of changes in FA protein density, age, stress magnitude, assembly/disassembly status, or subcellular position induced by pleiotropic perturbations to Rho family guanosine triphosphatase signaling and myosin II activity. Thus, F-actin speed is a fundamental regulator of traction force at FAs during cell migration.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cell-ECM traction force modulates endogenous tension at cell–cell contacts

Venkat Maruthamuthu; Benedikt Sabass; Ulrich Schwarz; Margaret L. Gardel

Cells in tissues are mechanically coupled both to the ECM and neighboring cells, but the coordination and interdependency of forces sustained at cell-ECM and cell–cell adhesions are unknown. In this paper, we demonstrate that the endogenous force sustained at the cell–cell contact between a pair of epithelial cells is approximately 100 nN, directed perpendicular to the cell–cell interface and concentrated at the contact edges. This force is stably maintained over time despite significant fluctuations in cell–cell contact length and cell morphology. A direct relationship between the total cellular traction force on the ECM and the endogenous cell–cell force exists, indicating that the cell–cell tension is a constant fraction of the cell-ECM traction. Thus, modulation of ECM properties that impact cell-ECM traction alters cell–cell tension. Finally, we show in a minimal model of a tissue that all cells experience similar forces from the surrounding microenvironment, despite differences in the extent of cell-ECM and cell–cell adhesion. This interdependence of cell–cell and cell-ECM forces has significant implications for the maintenance of the mechanical integrity of tissues, mechanotransduction, and tumor mechanobiology.


Journal of Cell Science | 2012

United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction

Ulrich Schwarz; Margaret L. Gardel

Summary Many essential cellular functions in health and disease are closely linked to the ability of cells to respond to mechanical forces. In the context of cell adhesion to the extracellular matrix, the forces that are generated within the actin cytoskeleton and transmitted through integrin-based focal adhesions are essential for the cellular response to environmental clues, such as the spatial distribution of adhesive ligands or matrix stiffness. Whereas substantial progress has been made in identifying mechanosensitive molecules that can transduce mechanical force into biochemical signals, much less is known about the nature of cytoskeletal force generation and transmission that regulates the magnitude, duration and spatial distribution of forces imposed on these mechanosensitive complexes. By focusing on cell-matrix adhesion to flat elastic substrates, on which traction forces can be measured with high temporal and spatial resolution, we discuss our current understanding of the physical mechanisms that integrate a large range of molecular mechanotransduction events on cellular scales. Physical limits of stability emerge as one important element of the cellular response that complements the structural changes affected by regulatory systems in response to mechanical processes.


Journal of Cell Biology | 2012

Tension is required but not sufficient for focal adhesion maturation without a stress fiber template

Patrick W. Oakes; Yvonne Beckham; Jonathan Stricker; Margaret L. Gardel

Lamellar actin architecture at adhesion sites may serve as a structural template that facilitates focal adhesion maturation over a wide range of tension.


Proceedings of the National Academy of Sciences of the United States of America | 2012

F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

Michael P. Murrell; Margaret L. Gardel

Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells.


Chemistry & Biology | 2009

Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly

Syed Alipayam Rizvi; Erin M. Neidt; Jiayue Cui; Zach Feiger; Colleen T. Skau; Margaret L. Gardel; Sergey A. Kozmin; David R. Kovar

Formins stimulate actin filament assembly for fundamental cellular processes including division, adhesion, establishing polarity, and motility. A formin inhibitor would be useful because most cells express multiple formins whose functions are not known and because metastatic tumor formation depends on the deregulation of formin-dependent processes. We identified a general small molecule inhibitor of formin homology 2 domains (SMIFH2) by screening compounds for the ability to prevent formin-mediated actin assembly in vitro. SMIFH2 targets formins from evolutionarily diverse organisms including yeast, nematode worm, and mice, with a half-maximal inhibitor concentration of approximately 5 to 15 microM. SMIFH2 prevents both formin nucleation and processive barbed end elongation and decreases formins affinity for the barbed end. Furthermore, low micromolar concentrations of SMIFH2 disrupt formin-dependent, but not Arp2/3 complex-dependent, actin cytoskeletal structures in fission yeast and mammalian NIH 3T3 fibroblasts.


Journal of Cell Biology | 2008

PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility

Yangmi Lim; Ssang-Taek Lim; Alok Tomar; Margaret L. Gardel; Joie A. Bernard-Trifilo; Xiao Lei Chen; Sean Uryu; Rafaela Cañete-Soler; Jinbin Zhai; Hong Lin; William W. Schlaepfer; Perihan Nalbant; Gary M. Bokoch; Dusko Ilic; Clare M. Waterman-Storer; David D. Schlaepfer

Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of focal adhesion kinase (FAK) in mouse embryonic fibroblasts (MEFs). Additionally, we demonstrate that Pyk2 facilitates deregulated RhoA activation, elevated FA formation, and enhanced cell proliferation by promoting p190RhoGEF expression. In normal MEFs, p190RhoGEF knockdown inhibits FN-associated RhoA activation, FA formation, and cell migration. Knockdown of p190RhoGEF-related GEFH1 does not affect FA formation in FAK−/− or normal MEFs. p190RhoGEF overexpression enhances RhoA activation and FA formation in MEFs dependent on FAK binding and associated with p190RhoGEF FA recruitment and tyrosine phosphorylation. These studies elucidate a compensatory function for Pyk2 upon FAK loss and identify the FAK–p190RhoGEF complex as an important integrin-proximal regulator of FA formation during FN-stimulated cell motility.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions

Nicolas Borghi; Molly Lowndes; Venkat Maruthamuthu; Margaret L. Gardel; W. James Nelson

During normal development and in disease, cohesive tissues undergo rearrangements that require integration of signals from cell adhesions to neighboring cells and to the extracellular matrix (ECM). How a range of cell behaviors is coordinated by these different adhesion complexes is unknown. To analyze epithelial cell motile behavior in response to combinations of cell–ECM and cell–cell adhesion cues, we took a reductionist approach at the single-cell scale by using unique, functionalized micropatterned surfaces comprising alternating stripes of ECM (collagenIV) and adjustable amounts of E-cadherin-Fc (EcadFc). On these surfaces, individual cells spatially segregated integrin- and cadherin-based complexes between collagenIV and EcadFc surfaces, respectively. Cell migration required collagenIV and did not occur on surfaces functionalized with only EcadFc. However, E-cadherin adhesion dampened lamellipodia activity on both collagenIV and EcadFc surfaces and biased the direction of cell migration without affecting the migration rate, all in an EcadFc concentration-dependent manner. Traction force microscopy showed that spatial confinement of integrin-based adhesions to collagenIV stripes induced anisotropic cell traction on collagenIV and migration directional bias. Selective depletion of different pools of αE-catenin, an E-cadherin and actin binding protein, identified a membrane-associated pool required for E-cadherin–mediated adhesion and down-regulation of lamellipodia activity and a cytosolic pool that down-regulated the migration rate in an E-cadherin adhesion-independent manner. These results demonstrate that there is crosstalk between E-cadherin– and integrin-based adhesion complexes and that E-cadherin regulates lamellipodia activity and cell migration directionality, but not cell migration rate.


Biophysical Journal | 2011

Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions

Jonathan Stricker; Yvonne Aratyn-Schaus; Patrick W. Oakes; Margaret L. Gardel

Focal adhesions (FAs) are the predominant mechanism by which cells mechanically couple to and exert traction forces on their extracellular matrix (ECM). It is widely presumed that FA size is modulated by force to mediate changes in adhesion strength at different levels of cellular tension. However, previous studies seeking correlations between force and FA morphology have yielded variable and often conflicting results. Here we show that a strong correlation between adhesion size and traction force exists only during the initial stages of myosin-mediated adhesion maturation and growth. For mature adhesions, no correlation between traction stress and size is observed. Rather, the tension that is sustained at mature adhesions is more strongly influenced by proximity to the cell edge, with peripheral adhesions transmitting higher tension than adhesions near the cell center. Finally, we show that mature adhesions can withstand sixfold increases in tension without changes in size. Thus, although a strong correlation between adhesion size and mechanical tension is observed during the initial stages of myosin-mediated adhesion maturation, no correlation is observed in mature, elongated adhesions. This work places spatiotemporal constraints on the force-dependent growth of adhesions and provides insight into the mechanical regulation of cell-ECM adhesion.

Collaboration


Dive into the Margaret L. Gardel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge