Margaret Loughnan
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margaret Loughnan.
Progress in Physical Geography | 2013
Andrew M. Coutts; Nigel J. Tapper; Jason Beringer; Margaret Loughnan; Matthias Demuzere
Urban drainage infrastructure is generally designed to rapidly export stormwater away from the urban environment to minimize flood risk created by extensive impervious surface cover. This deficit is resolved by importing high-quality potable water for irrigation. However, cities and towns at times face water restrictions in response to drought and water scarcity. This can exacerbate heating and drying, and promote the development of unfavourable urban climates. The combination of excessive heating driven by urban development, low water availability and future climate change impacts could compromise human health and amenity for urban dwellers. This paper draws on existing literature to demonstrate the potential of Water Sensitive Urban Design (WSUD) to help improve outdoor human thermal comfort in urban areas and support Climate Sensitive Urban Design (CSUD) objectives within the Australian context. WSUD provides a mechanism for retaining water in the urban landscape through stormwater harvesting and reuse while also reducing urban temperatures through enhanced evapotranspiration and surface cooling. Research suggests that WSUD features are broadly capable of lowering temperatures and improving human thermal comfort, and when integrated with vegetation (especially trees) have potential to meet CSUD objectives. However, the degree of benefit (the intensity of cooling and improvements to human thermal comfort) depends on a multitude of factors including local environmental conditions, the design and placement of the systems, and the nature of the surrounding urban landscape. We suggest that WSUD can provide a source of water across Australian urban environments for landscape irrigation and soil moisture replenishment to maximize the urban climatic benefits of existing vegetation and green spaces. WSUD should be implemented strategically into the urban landscape, targeting areas of high heat exposure, with many distributed WSUD features at regular intervals to promote infiltration and evapotranspiration, and maintain tree health.
International Journal of Health Geographics | 2008
Margaret Loughnan; Neville Nicholls; Nigel J. Tapper
BackgroundSeasonal patterns in cardiac disease in the northern hemisphere are well described in the literature. More recently age and gender differences in cardiac mortality and to a lesser extent morbidity have been presented. To date spatial differences between the seasonal patterns of cardiac disease has not been presented. Literature relating to seasonal patterns in cardiac disease in the southern hemisphere and in Australia in particular is scarce. The aim of this paper is to describe the seasonal, age, gender, and spatial patterns of cardiac disease in Melbourne Australia by using acute myocardial infarction admissions to hospital as a marker of cardiac disease.ResultsThere were 33,165 Acute Myocardial Infarction (AMI) admissions over 2186 consecutive days. There is a seasonal pattern in AMI admissions with increased rates during the colder months. The peak month is July. The admissions rate is greater for males than for females, although this difference decreases with advancing age. The maximal AMI season for males extends from April to November. The difference between months of peak and minimum admissions was 33.7%. Increased female AMI admissions occur from May to November, with a variation between peak and minimum of 23.1%. Maps of seasonal AMI admissions demonstrate spatial differences. Analysis using Global and Local Morans I showed increased spatial clustering during the warmer months. The Bivariate Morans I statistic indicated a weaker relationship between AMI and age during the warmer months.ConclusionThere are two distinct seasons with increased admissions during the colder part of the year. Males present a stronger seasonal pattern than females. There are spatial differences in AMI admissions throughout the year that cannot be explained by the age structure of the population. The seasonal difference in AMI admissions warrants further investigation. This includes detailing the prevalence of cardiac disease in the community and examining issues of social and environmental justice.
International journal of population research | 2012
Margaret Loughnan; Neville Nicholls; Nigel J. Tapper
Periods of extreme heat pose a risk to the health of individuals, especially the elderly, the very young, and the chronically ill. Risk factors include housing characteristics, and socioeconomic factors, or environmental risk factors such as urban heat islands. This study developed an index of population vulnerability in an urban setting using known environmental, demographic, and health-related risk factors for heat stress. The spatial variations in risk factors were correlated with spatial variation in heat-related health outcomes in urban Melbourne. The index was weighted using measured health outcomes during heatwave periods. The index was then mapped to produce a spatial representation of risk. The key risk factors were identified as areas with aged care facilities, higher proportions of older people living alone, living in suburban rather than inner city areas, and areas with larger proportions of people who spoke a language other than English at home. The maps of spatial vulnerability provide information to target heat-related health risks by aiding policy advisors, urban planners, healthcare professionals, and ancillary services to develop heatwave preparedness plans at a local scale.
International Scholarly Research Notices | 2014
Margaret Loughnan; Nigel J. Tapper; Thu Phan
Building healthy societies is a key step towards climate resilient communities. Ill health is related to increased risk during heat events and is disproportionally distributed within and between communities. To understand the differences in the spatial distribution of climate related health risks and how this will change in the future we have undertaken a spatiotemporal analysis of heatwave risks in urban populations in Brisbane, Australia. The aim of this was to advise emergency managers and public health authorities of high-risk areas during extreme heat events (EHEs). The spatial distribution of heat related morbidity identified areas of high healthcare service demand during EHEs. An index of risk was developed based on social and environmental determinants of vulnerability. Regression analysis was used to determine the key drivers of heat related morbidity from the index. A weighted map of population vulnerability was produced which identified the high risk areas and provided key information to target public health interventions and heat stress prevention policy. The predicted changes in high risk populations such as the proportion of elderly people living in urban areas were also mapped to support longer term adaptation and develop health care infrastructure and health promotion strategies.
Journal of Environmental and Public Health | 2014
Margaret Loughnan; Nigel J. Tapper; Terence Loughnan
The effects of extreme temperatures on human health have been well described. However, the adverse health effects of warm weather that occurs outside the summer period have had little attention. We used daily anomalous AMI morbidity and daily anomalous temperature to determine the impact of “unseasonable” temperature on human health. The “unseasonably” warm weather was attributed to a slow moving high pressure system to the east of Melbourne. No morbidity displacement was noted during either of these periods suggesting that morbidity due to “unseasonable” temperatures is avoidable. An increase in warmer weather during the cooler months of spring may result in increased morbidity, and an alert system based on summer thresholds may not be appropriate for early season heat health warnings. A straightforward alert system based on calculating anomalous temperature from daily weather forecasts may reduce the public health impact of “unseasonably” warm weather.
International Scholarly Research Notices | 2013
Cho Kwong Charlie Lam; Margaret Loughnan; Nigel J. Tapper
Background. The current weather warning system aims to reduce mortality from heat and cold stress but still has room to be improved in terms of incorporating other temperature metrics. The aim of this study is to determine how extreme temperature affects mortality in Hong Kong. Methods. An ecological study was used; daily weather data were subdivided into seven temperature metrics. Daily detrended mortality data were stratified by disease groups and analysed using seven different metrics for temperature. The temperature metrics were then compared. Results. A diurnal temperature range (DTR) of ≥8°C leading to an increase in median mortality of up to 16% and a mean temperature change between neighbouring days of ≥4°C leading to an increase in median mortality of up to 6% were the critical thresholds for excess mortality in Hong Kong. Conclusions. This study reveals that mean net effective temperature, DTR, and temperature change between neighbouring days are effective to predict excess mortality in Hong Kong.
International Journal of Biometeorology | 2008
Neville Nicholls; Carol Skinner; Margaret Loughnan; Nigel J. Tapper
Applied Geography | 2010
Margaret Loughnan; Neville Nicholls; Nigel J. Tapper
International Journal of Health Geographics | 2010
Margaret Loughnan; Neville Nicholls; Nigel J. Tapper
Health & Place | 2010
Margaret Loughnan; Neville Nicholls; Nigel J. Tapper