Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret M. Meixner is active.

Publication


Featured researches published by Margaret M. Meixner.


The Astronomical Journal | 2006

Spitzer survey of the large magellanic cloud: Surveying the agents of a Galaxy's evolution (SAGE). I. Overview and initial results

Margaret M. Meixner; Karl D. Gordon; Remy Indebetouw; Joseph L. Hora; Barbara A. Whitney; R. D. Blum; William T. Reach; Jean Philippe Bernard; Marilyn R. Meade; B. L. Babler; C. W. Engelbracht; B.-Q. For; Karl Anthony Misselt; Uma P. Vijh; Claus Leitherer; Martin Cohen; Ed B. Churchwell; F. Boulanger; Jay A. Frogel; Yasuo Fukui; J. S. Gallagher; Varoujan Gorjian; Jason Harris; Douglas M. Kelly; Akiko Kawamura; So Young Kim; William B. Latter; S. Madden; Ciska Markwick-Kemper; Akira Mizuno

We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxys Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGEs point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGEs detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.


Science | 2011

Herschel detects a massive dust reservoir in supernova 1987A.

Mikako Matsuura; Eli Dwek; Margaret M. Meixner; Masaaki Otsuka; B. L. Babler; M. J. Barlow; Julia Roman-Duval; C. W. Engelbracht; Karin Sandstrom; M. Lakićević; J. Th. van Loon; George Sonneborn; Geoffrey C. Clayton; Knox S. Long; Peter Lundqvist; Takaya Nozawa; Karl D. Gordon; S. Hony; P. Panuzzo; K. Okumura; Karl Anthony Misselt; Edward Montiel; M. Sauvage

The large amount of dust produced by this supernova may help explain the dust observed in young galaxies. We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.


The Astrophysical Journal | 2000

An hst snapshot survey of proto-planetary nebulae candidates: two types of axisymmetric reflection nebulosities

Toshiya Ueta; Margaret M. Meixner; Matthew Bobrowsky

We report the results from an optical imaging survey of proto-planetary nebula candidates using the Hubble Space Telescope (HST). The goals of the survey were to image low surface brightness optical reflection nebulosities around proto-planetary nebulae and to investigate the distribution of the circumstellar dust, which scatters the star light from the central post-asymptotic giant branch star and creates the optical reflection nebulosities. We exploited the high resolving power and wide dynamic range of HST and detected nebulosities in 21 of 27 sources. The reduced and deconvolved images are presented along with photometric and geometric measurements. All detected reflection nebulosities show elongation, and the nebula morphology bifurcates depending on the degree of the central star obscuration. The star-obvious low-level-elongated (SOLE) nebulae show a bright central star embedded in a faint, extended nebulosity, whereas the dust-prominent longitudinally extended (DUPLEX) nebulae have remarkable bipolar structure with a completely or partially obscured central star. The intrinsic axisymmetry of these proto-planetary nebula reflection nebulosities demonstrates that the axisymmetry frequently found in planetary nebulae predates the proto-planetary nebula phase, confirming previous independent results. We suggest that axisymmetry in proto-planetary nebulae is created by an equatorially enhanced superwind at the end of the asymptotic giant branch phase. We discuss that the apparent morphological dichotomy is caused by a difference in the optical thickness of the circumstellar dust/gas shell with a differing equator-to-pole density contrast. Moreover, we show that SOLE and DUPLEX nebulae are physically distinct types of proto-planetary nebulae, with a suggestion that higher mass progenitor AGB stars are more likely to become DUPLEX proto-planetary nebulae.


Science | 2006

Massive-Star Supernovae as Major Dust Factories

Ben E. K. Sugerman; Barbara Ercolano; M. J. Barlow; A. G. G. M. Tielens; Geoffrey C. Clayton; Albert A. Zijlstra; Margaret M. Meixner; Angela Karen Speck; Tim M. Gledhill; Nino Panagia; Martin Cohen; Karl D. Gordon; Martin Meyer; Joanna Fabbri; Janet. E. Bowey; Douglas L. Welch; Michael W. Regan; Robert C. Kennicutt

We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.


The Astronomical Journal | 2011

Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview

Karl D. Gordon; Margaret M. Meixner; Marilyn R. Meade; Barbara A. Whitney; C. W. Engelbracht; Caroline Bot; Martha L. Boyer; Brandon L. Lawton; Marta Malgorzata Sewilo; B. L. Babler; J.-P. Bernard; S. Bracker; Miwa Block; R. D. Blum; Alberto D. Bolatto; A. Z. Bonanos; J. Harris; Joseph L. Hora; R. Indebetouw; Karl Anthony Misselt; William T. Reach; Bernie Shiao; X. Tielens; Lynn Redding Carlson; E. Churchwell; Geoffrey C. Clayton; Che-Yu Chen; Marc J. Cohen; Yasuo Fukui; Varoujan Gorjian

The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 μm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 μm/24 μm ratio is somewhat lower than the average and the 70 μm/160 μm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers.


Monthly Notices of the Royal Astronomical Society | 2009

The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution

Mikako Matsuura; M. J. Barlow; Albert A. Zijlstra; Patricia A. Whitelock; M-R.L. Cioni; Martin A. T. Groenewegen; Kevin Volk; F. Kemper; T. Kodama; E. Lagadec; Margaret M. Meixner; G. C. Sloan; S. Srinivasan

We report on an analysis of the gas and dust budget in the the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). Recent observations from the Spitzer Space Telescope enable us to study the mid-infrared dust excess of asymptotic giant branch (AGB) stars in the LMC. This is the first time we can quantitatively assess the gas and dust input from AGB stars over a complete galaxy, fully based on observations. The integrated mass-loss rate over all intermediate and high mass-loss rate carbon-rich AGB candidates in the LMC is 8.5 × 10 −3 M⊙ yr −1 , up to 2.1 × 10 −2 M⊙ yr −1 . This number could be increased up to 2.7×10 −2 M⊙ yr −1 if oxygen-rich stars are included. This is overall consistent with theoretical expectations, considering the star formation rate when these low- and intermediate-mass stars where formed, and the initial mass functions. AGB stars are one of the most important gas sources in the LMC, with supernovae (SNe), which produces about 2–4×10 −2 M⊙ yr −1 . At the moment, the star formation rate exceeds the gas feedback from AGB stars and SNe in the LMC, and the current star formation depends on gas already present in the ISM. This suggests that as the gas in the ISM is exhausted, the star formation rate will eventually decline in the LMC, unless gas is supplied externally. Our estimates suggest ‘a missing dust-mass problem’ in the LMC, which is similarly found in high-z galaxies: the accumulated dust mass from AGB stars and possibly SNe over the dust life time (400–800Myrs) is significant less than the dust mass in the ISM. Another dust source is required, possibly related to star-forming regions.


Astronomy and Astrophysics | 2011

Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud

F. Galliano; S. Hony; J.-P. Bernard; Caroline Bot; S. Madden; Julia Roman-Duval; M. Galametz; Aigen Li; Margaret M. Meixner; C. W. Engelbracht; V. Lebouteiller; Karl Anthony Misselt; Edward Montiel; P. Panuzzo; William T. Reach; Ramin A. Skibba

Context. Herschel provides crucial constraints on the IR SEDs of galaxies, allowing unprecedented accuracy on the dust mass estimates. However, these estimates rely on non-linear models and poorly-known optical properties. Aims. In this paper, we perform detailed modelling of the Spitzer and Herschel observations of the LMC, in order to: (i) systematically study the uncertainties and biases affecting dust mass estimates; and to (ii) explore the peculiar ISM properties of the LMC. Methods. To achieve these goals, we have modelled the spatially resolved SEDs with two alternate grain compositions, to study the impact of different submillimetre opacities on the dust mass. We have rigorously propagated the observational errors (noise and calibration) through the entire fitting process, in order to derive consistent parameter uncertainties. Results. First, we show that using the integrated SED leads to underestimating the dust mass by ≃50% compared to the value obtained with sufficient spatial resolution, for the region we studied. This might be the case, in general, for unresolved galaxies. Second, we show that Milky Way type grains produce higher gas-to-dust mass ratios than what seems possible according to the element abundances in the LMC. A spatial analysis shows that this dilemma is the result of an exceptional property: the grains of the LMC have on average a larger intrinsic submm opacity (emissivity index β ≃ 1.7 and opacity κ_(abs)(160 μm) = 1.6 m^2 kg^(-1)) than those of the Galaxy. By studying the spatial distribution of the gas-to-dust mass ratio, we are able to constrain the fraction of unseen gas mass between ≃10, and ≃100% and show that it is not sufficient to explain the gas-to-dust mass ratio obtained with Milky Way type grains. Finally, we confirm the detection of a 500 μm extended emission excess with an average relative amplitude of ≃15%, varying up to 40%. This excess anticorrelates well with the dust mass surface density. Although we do not know the origin of this excess, we show that it is unlikely the result of very cold dust, or CMB fluctuations.


The Astronomical Journal | 2008

Spitzer survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) IV: dust properties in the interstellar medium

Jean Philippe Bernard; William T. Reach; D. Paradis; Margaret M. Meixner; R. Paladini; Akiko Kawamura; Toshikazu Onishi; Uma P. Vijh; Karl D. Gordon; Remy Indebetouw; Joseph L. Hora; Barbara A. Whitney; R. D. Blum; Marilyn R. Meade; B. L. Babler; Ed Churchwell; C. W. Engelbracht; B.-Q. For; Karl Anthony Misselt; Claus Leitherer; Martin Cohen; F. Boulanger; Jay A. Frogel; Yasuo Fukui; J. S. Gallagher; Varoujan Gorjian; Jason Harris; Douglas M. Kelly; William B. Latter; S. Madden

The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 μm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation.


Astronomy and Astrophysics | 2010

HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE): The Large Magellanic Cloud dust

Margaret M. Meixner; F. Galliano; S. Hony; Julia Roman-Duval; Thomas P. Robitaille; P. Panuzzo; M. Sauvage; Karl D. Gordon; C. W. Engelbracht; Karl Anthony Misselt; K. Okumura; Tracy L. Beck; J.-P. Bernard; Alberto D. Bolatto; Caroline Bot; Martha L. Boyer; S. Bracker; Lynn Redding Carlson; Geoffrey C. Clayton; C.-H. R. Chen; E. Churchwell; Yasuo Fukui; M. Galametz; Joseph L. Hora; Annie Hughes; Remy Indebetouw; F. P. Israel; Akiko Kawamura; F. Kemper; Sungeun Kim

The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observatory’s PACS and SPIRE photometry cameras, we imaged a 2° × 8° strip through the LMC, at a position angle of ~22.5° as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 μm and SPIRE 250, 350 and 500 μm. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 μm emission is in excess of the models by ~6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (f_(PAH)) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J = 1−0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65^(+15) _(−18) making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287^_(+25)_(−42) that is more consistent with a GDR inferred from extinction.


The Astronomical Journal | 2009

Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud

A. Z. Bonanos; Derck L. Massa; Marta Malgorzata Sewilo; Danny J. Lennon; Nino Panagia; Linda J. Smith; Margaret M. Meixner; B. L. Babler; S. Bracker; Marilyn R. Meade; Karl D. Gordon; Joseph L. Hora; Remy Indebetouw; Barbara A. Whitney

We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHKs +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L ☉ ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

Collaboration


Dive into the Margaret M. Meixner's collaboration.

Top Co-Authors

Avatar

Karl D. Gordon

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. L. Babler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marilyn R. Meade

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge