Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret M. Zaleska is active.

Publication


Featured researches published by Margaret M. Zaleska.


Journal of Pharmacology and Experimental Therapeutics | 2009

Begacestat (GSI-953): A Novel, Selective Thiophene Sulfonamide Inhibitor of Amyloid Precursor Protein γ-Secretase for the Treatment of Alzheimer's Disease

Robert Martone; Hua Zhou; Kevin Atchison; Thomas A. Comery; Jane Z. Xu; Xinyi Huang; Xioahai Gong; Mei Jin; Anthony F. Kreft; Boyd L. Harrison; Scott Christian Mayer; Suzan Aschmies; Cathleen Gonzales; Margaret M. Zaleska; David Riddell; Erik Wagner; Peimin Lu; Shaiu-Ching Sun; June Sonnenberg-Reines; Aram Oganesian; Karissa Adkins; Michael W. Leach; David W. Clarke; Donna M. Huryn; Magid Abou-Gharbia; Ronald L. Magolda; Glen S. Frick; Sangeeta Raje; S. Bradley Forlow; Carrie Balliet

The presenilin containing γ-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. γ-Secretase catalyzes the final step in the generation of Aβ40 and Aβ42 peptides from APP. Amyloid β-peptides (Aβ peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimers disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic Aβ peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide γ-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits Aβ production with low nanomolar potency in cellular and cell-free assays of γ-secretase function, and displaces a tritiated analog of GSI-953 from enriched γ-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid Aβ levels, and a reversal of contextual fear-conditioning deficits that are correlated with Aβ load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dose-dependent changes in plasma Aβ levels, confirming pharmacodynamic activity of GSI-953 in humans.


Journal of Cerebral Blood Flow and Metabolism | 2008

Missing Steps in the STAIR Case: A Translational Medicine Perspective on the Development of NXY-059 for Treatment of Acute Ischemic Stroke:

Giora Z. Feuerstein; Margaret M. Zaleska; Michael Krams; Xinkang Wang; Mark Day; Julia L Rutkowski; Seth P. Finklestein; Menelas N. Pangalos; Michael Poole; Gary L Stiles; Robert R. Ruffolo; Frank L Walsh

The continued failure in approving new drugs for treatment of acute stroke has been recently set back by the failure of the NXY-059 (Stroke-Acute Ischemic NXY Treatment (SAINT) II) trial. The disappointment was heightened by the latter study being viewed as a most promising compound for stroke drug development program based on the preclinical data. Since the SAINT I/II development program included many of the STAIR (Stroke Therapy Academic Industry Round table) guidelines, yet have still failed to achieve the expected efficacy, there is a clear need to continue and analyze the path forward for stroke drug discovery. To this end, this review calls for a consortium approach including academia, government (FDA/NIH), and pharmaceutical industry partnerships to define this path. It is also imperative that more attention is given to the evolving discipline of Translational Medicine. A key issue in this respect is the need to devote more attention to the characteristics of the drug candidate nature—target interaction, and its relationship to pharmacodynamic treatment end points. It is equally important that efforts are spent to prove that phenotypic outcomes are linked to the purported mechanism of action of the compound. Development of technologies that allows a better assessment of these parameters, especially in in vivo models are paramount. Finally, rational patient selection and new outcome scales tailored in an adaptive design model must be evaluated.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade

J. Steven Jacobsen; Thomas A. Comery; Robert Martone; Hassan Mahmoud Elokdah; David L. Crandall; Aram Oganesian; Suzan Aschmies; Cathleen Gonzales; Jane Xu; Hua Zhou; Kevin Atchison; Erik Wagner; Margaret M. Zaleska; Indranil Das; Robert Arias; David Riddell; Stephen J. Gardell; Magid Abou-Gharbia; Albert Jean Robichaud; Ronald L. Magolda; George P. Vlasuk; Thorir Bjornsson; Peter Reinhart; Menelas N. Pangalos

The amyloid hypothesis states that a variety of neurotoxic β-amyloid (Aβ) species contribute to the pathogenesis of Alzheimers disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Aβ production and clearance. Enzymes responsible for the degradation of Aβ are not well understood, and, thus far, it has not been possible to enhance Aβ catabolism by pharmacological manipulation. We provide evidence that Aβ catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Aβ levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Aβ oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Aβ. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Aβ levels, restore long-term potentiation deficits in hippocampal slices from transgenic Aβ-producing mice, and reverse cognitive deficits in these mice.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities

Benfang Ruan; Kevin Pong; Flora Jow; Mark R. Bowlby; Robert A. Crozier; Danni Liu; Shi Liang; Yi Chen; Mary Lynn T. Mercado; Xidong Feng; Frann Bennett; David von Schack; Leonard A. McDonald; Margaret M. Zaleska; Andrew R. Wood; Peter Reinhart; Ronald L. Magolda; Jerauld Skotnicki; Menelas N. Pangalos; Frank E. Koehn; Guy T. Carter; Magid Abou-Gharbia; Edmund I. Graziani

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the β1-subunit of L-type voltage-dependent Ca2+ channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca2+ channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca2+-induced cell death by modulating Ca2+ channels and promote neurite outgrowth via FKBP52 binding.


Journal of Medicinal Chemistry | 2008

Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer's Disease

Scott Christian Mayer; Anthony F. Kreft; Boyd L. Harrison; Magid Abou-Gharbia; Madelene Antane; Suzan Aschmies; Kevin Atchison; Michael Chlenov; Derek Cecil Cole; Thomas A. Comery; George Diamantidis; John W. Ellingboe; Kristi Fan; Rocco John Galante; Cathleen Gonzales; Douglas M. Ho; Molly Hoke; Yun Hu; Donna M. Huryn; Uday Jain; Mei Jin; Kenneth Alfred Martin Kremer; Dennis M. Kubrak; Melissa Lin; Peimin Lu; Ron Magolda; Robert Martone; William M. Moore; Aram Oganesian; Menelas N. Pangalos

SAR on HTS hits 1 and 2 led to the potent, Notch-1-sparing GSI 9, which lowered brain Abeta in Tg2576 mice at 100 mg/kg po. Converting the metabolically labile methyl groups in 9 to trifluoromethyl groups afforded the more stable analogue 10, which had improved in vivo potency. Further side chain modification afforded the potent Notch-1-sparing GSI begacestat (5), which was selected for development for the treatment of Alzheimers disease.


Neuropharmacology | 2009

The development of stroke therapeutics: promising mechanisms and translational challenges.

Margaret M. Zaleska; Mary Lynn T. Mercado; Juan C. Chavez; Giora Z. Feuerstein; Menelas N. Pangalos; Andrew Wood

Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. Intravenous thrombolysis with rt-PA remains the only available acute therapy in patients who present within 3h of stroke onset other than the recently approved mechanical MERCI device, substantiating the high unmet need in available stroke therapeutics. The development of successful therapeutic strategies remains challenging, as evidenced by the continued failures of new therapies in clinical trials. However, significant lessons have been learned and this knowledge is currently being incorporated into improved pre-clinical and clinical design. Furthermore, advancements in imaging technologies and continued progress in understanding biological pathways have established a prolonged presence of salvageable penumbral brain tissue and have begun to elucidate the natural repair response initiated by ischemic insult. We review important past and current approaches to drug development with an emphasis on implementing principles of translational research to achieve a rigorous conversion of knowledge from bench to bedside. We highlight current strategies to protect and repair brain tissue with the promise to provide longer therapeutic windows, preservation of multiple tissue compartments and improved clinical success.


Neurobiology of Disease | 2008

Amiloride is neuroprotective in an MPTP model of Parkinson's disease.

Robert L. Arias; Mei-Li A. Sung; Dmytro Vasylyev; Mei-Yi Zhang; Kristin Albinson; Katie Kubek; Natasha Kagan; Chad E. Beyer; Qian Lin; Jason M. Dwyer; Margaret M. Zaleska; Mark R. Bowlby; John Dunlop; Michael M. Monaghan

The diuretic amiloride has recently proven neuroprotective in models of cerebral ischemia, a property attributable to the drugs inhibition of central acid-sensing ion channels (ASICs). Given that Parkinsons disease (PD), like ischemia, is associated with cerebral lactic acidosis, we tested amiloride in the MPTP-treated mouse, a model of PD also manifesting lactic acidosis. Amiloride was found to protect substantia nigra (SNc) neurons from MPTP-induced degeneration, as determined by attenuated reductions in striatal tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunohistochemistry, as well as smaller declines in striatal DAT radioligand binding and dopamine levels. More significantly, amiloride also preserved dopaminergic cell bodies in the SNc. Administration of psalmotoxin venom (PcTX), an ASIC1a blocker, resulted in a much more modest effect, attenuating only the deficits in striatal DAT binding and dopamine. These findings represent the first experimental evidence of a potential role for ASICs in the pathogenesis of Parkinsons disease.


Brain Research Bulletin | 2000

Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats

Lee A. Dawson; Sina Djali; Cathleen Gonzales; M.A Vinegra; Margaret M. Zaleska

Using middle cerebral artery occlusion (MCAO) and in vivo microdialysis, we have evaluated the changes in extracellular concentrations of the excitatory amino acids (EAA) glutamate and aspartate during varying periods of MCAO (0, 30, 60 min) in the striatum of spontaneously hypertensive rats (SHR). A positive correlation between occlusion time-dependent elevations in EAAs and the resulting ischemic injury was observed. This is the first demonstration of the temporal profile of EAA efflux during transient focal ischemia in SHRs. Possible sources and mechanisms of ischemia-induced EAA efflux were examined during 60 min of MCAO. Removal of Ca(2+) from the microdialysis infusion media significantly attenuated ischemia-induced increases in both glutamate (from ischemic peak of 4892 +/- 1298 to 1144 +/- 666% of preischemic values) and aspartate (from 2703 +/- 682 to 2090 +/- 599% of preischemic values). Similarly, infusion of the voltage dependent Na(+) channel blocker tetrodotoxin (TTX; 10 microM) significantly attenuated MCAO-induced increases in glutamate (to 1313 +/- 648%) and aspartate (to 359 +/- 114%). Infusion of the GLT-1 selective nontransportable inhibitor, dihydrokainate (DHK; 1 mM) also significantly attenuated the ischemia-induced increases in both EAAs (1285 +/- 508 and 1366 +/- 741% of the preischemic levels, respectively). These results indicate that during transient focal ischemia the increase in extracellular EAAs originates from both the neuronal pool, via conventional exocytotic release, and glial sources via the reversal of the GLT-1 transporter.


Current Drug Targets - Cns & Neurological Disorders | 2003

Therapeutic implications for immunophilin ligands in the treatment of neurodegenerative diseases.

Kevin Pong; Margaret M. Zaleska

There is a significant unmet need for therapeutic agents in the treatment of neurodegenerative diseases. Given their clinical importance, prototypical molecules that clearly exhibit both neuroprotective and neuroregenerative activities have been highly sought after. The journey led to the exploitation of neurotrophins, a family of proteins that had extraordinary therapeutic properties in pre-clinical models of neurodegeneration. Although experimentally promising, clinical development of neurotrophins for various neurological indications, such as Alzheimers Disease, Amyotrophic Lateral Sclerosis, and Parkinsons Disease was met with severe obstacles and setbacks, such as the inability to deliver these large proteins to target population of neurons, instability of the proteins, and non-specific activity. Immunophilins are proteins that act as receptors for immunosuppresant drugs, i.e. FK506 (tacrolimus), cyclosporin A, and rapamycin (sirolimus, Rapamune). Studies indicate immunophilins are expressed 10-100 fold higher in CNS and PNS tissue than in immune tissue. Subsequent studies revealed potent neuroprotective and neuroregenerative properties of immunophilin ligands in both culture and animal models. In contrast to neurotrophins, most immunophilin ligands are highly stable, small molecules that can readily cross the blood-brain barrier and are orally bioavailable. Taken together, these data prompted the development of nonimmunosuppressive immunophilin ligands with potent therapeutic activities, although the potency of select compounds has come into question in more recent studies. This review will examine the experimental evidence supporting the use of immunophilin ligands for the treatment of neurodegenerative diseases and the current progression of these molecules in clinical trials.


Brain Research | 2003

Temporal assessment of caspase activation in experimental models of focal and global ischemia

Seongeun Cho; Danni Liu; Cathleen Gonzales; Margaret M. Zaleska; Andrew Wood

Rodent models of focal and global ischemia were used to examine caspase activation. Several readouts were employed on identical tissue to provide correlative measurement of caspase induction, activation and enzymatic activity. In a rat focal ischemia model, caspase-3 enzymatic activity, as recorded by DEVD-AMC cleavage, peaked in penumbral cortex at 6-12 h following ischemia, correlating with increases in caspase 3-cleaved substrates of PARP and alpha-spectrin and subsequent disappearance of caspase-3 zymogen. Although induction of caspases 8 and 2 proteins was detectable as early as 6 h following ischemia, examination of the same tissues for caspase 8 or 2 enzymatic activities did not show significant modulation up to 12 h after ischemic insult. Caspase 9 induction was evident only after 24 h postischemia and did not correlate with elevated LDHD-AMC cleavage. Following global ischemia in gerbils, levels of caspase-3 enzyme activity peaked at 12 h in hippocampal tissue extracts. Cleaved caspase-3 signal was prominent in NeuN-positive layers in the CA1 region 6-12 h following ischemia. Interestingly, strong caspase-3 immunoreactivity was also detected in the subgranular zone of the dentate gyrus, a known region of ischemia-induced neurogenesis. Caspase-3 activation may be responsible for the loss of these cells, thereby hindering the endogenous recovery process.

Collaboration


Dive into the Margaret M. Zaleska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela Kelley

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge