Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret Nickel is active.

Publication


Featured researches published by Margaret Nickel.


Journal of Biological Chemistry | 2007

Mechanism of ATP-binding Cassette Transporter A1-mediated Cellular Lipid Efflux to Apolipoprotein A-I and Formation of High Density Lipoprotein Particles

Charulatha Vedhachalam; Phu T. Duong; Margaret Nickel; David Nguyen; Padmaja Dhanasekaran; Hiroyuki Saito; George H. Rothblat; Sissel Lund-Katz; Michael C. Phillips

The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.


Journal of Lipid Research | 2006

Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I

Phu T. Duong; Heidi L. Collins; Margaret Nickel; Sissel Lund-Katz; George H. Rothblat; Michael C. Phillips

The nascent HDL created by ABCA1-mediated efflux of cellular phospholipid (PL) and free (unesterified) cholesterol (FC) to apolipoprotein A-I (apoA-I) has not been defined. To address this issue, we characterized the lipid particles released when J774 mouse macrophages and human skin fibroblasts in which ABCA1 is activated are incubated with human apoA-I. In both cases, three types of nascent HDL containing two, three, or four molecules of apoA-I per particle are formed. With J774 cells, the predominant species have hydrodynamic diameters of ∼9 and 12 nm. These discoidal HDL particles have different FC contents and PL compositions, and the presence of acidic PL causes them to exhibit α-electrophoretic mobility. These results are consistent with ABCA1 located in more than one membrane microenvironment being responsible for the production of the heterogeneous HDL. Activation of ABCA1 also leads to the release of apoA-I-free plasma membrane vesicles (microparticles). These larger, spherical particles released from J774 cells have the same PL composition as the 12 nm HDL and contain CD14 and ganglioside, consistent with their origin being plasma membrane raft domains. The various HDL particles and microparticles are created concurrently, and there is no precursor-product relationship between them. Importantly, a large fraction of the cellular FC effluxed from these cells by ABCA1 is located in microparticles. Collectively, these results show that the products of the apoA-I/ABCA1 interaction include discoidal HDL particles containing different numbers of apoA-I molecules. The cellular PLs and cholesterol incorporated into these nascent HDL particles originate from different cell membrane domains.


Journal of Biological Chemistry | 2003

Effects of Apolipoprotein A-I on ATP-binding Cassette Transporter A1-mediated Efflux of Macrophage Phospholipid and Cholesterol: Formation of nascent high density lipoprotein particles

Lijuan Liu; Anna E. Bortnick; Margaret Nickel; Padmaja Dhanasekaran; Papasani V. Subbaiah; Sissel Lund-Katz; George H. Rothblat; Michael C. Phillips

The mechanism of formation of high density lipoprotein (HDL) particles by the action of ATP-binding cassette transporter A1 (ABCA1) is not defined completely. To address this issue, we monitored efflux to apoA-I of phosphatidylcholine (PC), sphingomyelin (SM), and unesterified (free) cholesterol (FC) from J774 macrophages, in which ABCA1 is up-regulated, and investigated the nature of the particles formed. The various apoA-I/lipid particles appearing in the extracellular medium were separated by gel filtration chromatography. The presence of apoA-I in the extracellular medium led to the simultaneous formation of more than one type of poorly lipidated apoA-I-containing particle: there were 9- and 12-nm diameter particles containing ∼3:1 and 1:1 phospholipid/FC (mol/mol), respectively, which were present together with 6-nm monomeric apoA-I. Removal of the C-terminal α-helix (residues 223–243) of apoA-I reduced phospholipid and FC efflux and prevented formation of the 9- and 12-nm HDL particles; the apoA-I variant formed larger particles that eluted in the void volume. FC loading of the J774 cells also led to the formation of larger apoA-I-containing particles that were highly enriched in FC. Besides creating HDL particles, ABCA1 mediated release of larger (20–450-nm diameter) FC-rich particles that were not involved in HDL formation and that are probably membrane vesicles. These particles contained 1:1 PC/SM in contrast to the HDL particles, which contained 2:1 PC/SM. This is consistent with lipid raft and non-raft plasma membrane domains being involved primarily in ABCA1-mediated vesicle release and nascent HDL formation, respectively.


Journal of Biological Chemistry | 2004

Influence of ApoA-I Structure on the ABCA1-mediated Efflux of Cellular Lipids

Charulatha Vedhachalam; Lijuan Liu; Margaret Nickel; Padmaja Dhanasekaran; G. M. Anantharamaiah; Sissel Lund-Katz; George H. Rothblat; Michael C. Phillips

The influence of apolipoprotein (apo) A-I structure on ABCA1-mediated efflux of cellular unesterified (free) cholesterol (FC) and phospholipid (PL) is not well understood. To address this issue, we used a series of apoA-I mutants to examine the contributions of various domains in the molecule to ABCA1-mediated FC and PL efflux from mouse J774 macrophages and human skin fibroblasts. Irrespective of the cell type, deletion or disruption of the C-terminal lipid-binding domain of apoA-I drastically reduced the FC and PL efflux (∼90%), indicating that the C-terminal amphipathic α-helix is required for high affinity microsolubilization of FC and PL. Deletion in the N-terminal region of apoA-I also reduced the lipid efflux (∼30%) and increased the Km about 2-fold compared with wild type apoA-I, whereas deletion of the central domain (Δ123–166) had no effect on either Km or Vmax. These results indicate that ABCA1-mediated lipid efflux is relatively insensitive to the organization of the apoA-I N-terminal helix-bundle domain. Alterations in apoA-I structure caused parallel changes in its ability to bind to a PL bilayer and to induce efflux of FC and PL. Overall, these results are consistent with a two-step model for ABCA1-mediated lipid efflux. In the first step, apoA-I binds to ABCA1 and hydrophobic α-helices in the C-terminal domain of apoA-I insert into the region of the perturbed PL bilayer created by the PL transport activity of ABCA1, thereby allowing the second step of lipidation of apoA-I and formation of nascent high density lipoprotein particles to occur.


Journal of Biological Chemistry | 2002

Effects of Enrichment of Fibroblasts with Unesterified Cholesterol on the Efflux of Cellular Lipids to Apolipoprotein A-I

Kristin Gillotte-Taylor; Margaret Nickel; William J. Johnson; Omar L. Francone; Paul Holvoet; Sissel Lund-Katz; George H. Rothblat; Michael C. Phillips

This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8–5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are ∼2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.


Biochemistry | 2008

Influence of Tertiary Structure Domain Properties on the Functionality of Apolipoprotein A-I

Masafumi Tanaka; Mao Koyama; Padmaja Dhanasekaran; David Nguyen; Margaret Nickel; Sissel Lund-Katz; Hiroyuki Saito; Michael C. Phillips

The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.


Biochemistry | 2008

Contributions of the Carboxyl-Terminal Helical Segment to the Self-Association and Lipoprotein Preferences of Human Apolipoprotein E3 and E4 Isoforms

Takaaki Sakamoto; Masafumi Tanaka; Charulatha Vedhachalam; Margaret Nickel; David Nguyen; Padmaja Dhanasekaran; Michael C. Phillips; Sissel Lund-Katz; Hiroyuki Saito

To understand the molecular basis for the different self-association and lipoprotein preferences of apolipoprotein (apo) E isoforms, we compared the effects of progressive truncation of the C-terminal domain in human apoE3 and apoE4 on their lipid-free structure and lipid binding properties. A VLDL/HDL distribution assay demonstrated that apoE3 binds much better than apoE4 to HDL 3, whereas both isoforms bind similarly to VLDL. Removal of the C-terminal helical regions spanning residues 273-299 weakened the ability of both isoforms to bind to lipoproteins; this led to the elimination of the isoform lipoprotein preference, indicating that the C-terminal helices mediate the lipoprotein selectivity of apoE3 and apoE4 isoforms. Gel filtration chromatography experiments demonstrated that the monomer-tetramer distribution is different for the two isoforms with apoE4 being more monomeric than apoE3 and that removal of the C-terminal helices favors the monomeric state in both isoforms. Consistent with this, fluorescence measurements of Trp-264 in single-Trp mutants revealed that the C-terminal domain in apoE4 is less organized and more exposed to the aqueous environment than in apoE3. In addition, the solubilization of dimyristoylphosphatidylcholine multilamellar vesicles is more rapid with apoE4 than with apoE3; removal of the C-terminal helices significantly affected solubilization rates with both isoforms. Taken together, these results indicate that the C-terminal domain is organized differently in apoE3 and apoE4 so that apoE4 self-associates less and binds less than apoE3 to HDL surfaces; these alterations may lead to the pathological sequelae for cardiovascular and neurodegenerative diseases.


Biochemistry | 2010

Molecular Basis for the Differences in Lipid and Lipoprotein Binding Properties of Human Apolipoproteins E3 and E4

David Nguyen; Padmaja Dhanasekaran; Margaret Nickel; Ryosuke Nakatani; Hiroyuki Saito; Michael C. Phillips; Sissel Lund-Katz

Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ∼60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ∼80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.


Journal of Biological Chemistry | 2010

Influence of Apolipoprotein (Apo) A-I Structure on Nascent High Density Lipoprotein (HDL) Particle Size Distribution

Charulatha Vedhachalam; Palaniappan S. Chetty; Margaret Nickel; Padmaja Dhanasekaran; Sissel Lund-Katz; George H. Rothblat; Michael C. Phillips

The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1–189 and 190–243) and mouse apoA-I (residues 1–186 and 187–240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. Incubation of human apoA-I with cells gave rise to two sizes of HDL particles (hydrodynamic diameter, 8 and 10 nm), and removal or disruption of the C-terminal domain eliminated the formation of the smaller particle. Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.


Journal of Lipid Research | 2010

Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles.

Sissel Lund-Katz; David Nguyen; Padmaja Dhanasekaran; Momoe Kono; Margaret Nickel; Hiroyuki Saito; Michael C. Phillips

The partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between HDL-bound and -unbound states is an integral part of HDL metabolism. We used the surface plasmon resonance (SPR) technique to monitor in real time the reversible binding of apoA-I to HDL. Biotinylated human HDL2 and HDL3 were immobilized on a streptavidin-coated SPR sensor chip, and apoA-I solutions at different concentrations were flowed across the surface. The wild-type (WT) human and mouse apoA-I/HDL interaction involves a two-step process; apoA-I initially binds to HDL with fast association and dissociation rates, followed by a step exhibiting slower kinetics. The isolated N-terminal helix bundle domains of human and mouse apoA-I also exhibit a two-step binding process, consistent with the second slower step involving opening of the helix bundle domain. The results of fluorescence experiments with pyrene-labeled apoA-I are consistent with the N-terminal helix bundle domain interacting with proteins resident on the HDL particle surface. Dissociation constants (Kd) measured for WT human apoA-I interactions with HDL2 and HDL3 are about 10 µM, indicating that the binding is low affinity. This Kd value does not apply to all of the apoA-I molecules on the HDL particle but only to a relatively small, labile pool.

Collaboration


Dive into the Margaret Nickel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sissel Lund-Katz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Nguyen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George H. Rothblat

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mami Hata

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Masafumi Tanaka

Kobe Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge