Margaret Veselits
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margaret Veselits.
Molecular and Cellular Biology | 2004
Daisuke Ito; John R. Walker; Charlie S. Thompson; Isabella Moroz; William Lin; Margaret Veselits; Antoine M. Hakim; Allen A. Fienberg; Gopal Thinakaran
ABSTRACT Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK. In addition, STC2 expression is also activated in neuronal cells by oxidative stress and hypoxia but not by several cellular stresses unrelated to the UPR. In contrast, expression of another homologue, STC1, is only upregulated by hypoxia independent of PERK or ATF4 expression. In vivo studies revealed that rat cortical neurons rapidly upregulate STC2 after transient middle cerebral artery occlusion. Finally, siRNA-mediated inhibition of STC2 expression renders N2a neuroblastoma cells and HeLa cells significantly more vulnerable to apoptotic cell death after treatment with thapsigargin, and overexpression of STC2 attenuated thapsigargin-induced cell death. Consequently, induced STC2 expression is an essential feature of survival component of the UPR.
PLOS Biology | 2006
Ping Hou; Elizabeth Araujo; Tong Zhao; Miao Zhang; Don Massenburg; Margaret Veselits; Colleen Doyle; Aaron R. Dinner; Marcus R. Clark
Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.
Neurobiology of Disease | 2002
Jae Yoon Leem; Carlos A. Saura; Claus U. Pietrzik; John C. Christianson; Christian P. Wanamaker; LaShaunda T. King; Margaret Veselits; Taisuke Tomita; Laura Gasparini; Takeshi Iwatsubo; Huaxi Xu; William N. Green; Edward H. Koo; Gopal Thinakaran
Presenilin 1 (PS1) and presenilin 2 play a critical role in the gamma-secretase processing of amyloid precursor protein (APP) and Notch1. Here, we investigate maturation and intracellular trafficking of APP and other membrane proteins in cells expressing an experimental PS1 deletion mutant (deltaM1,2). Stable expression of deltaM1,2 impairs gamma-secretase processing of Notch1 and delays Abeta secretion. Kinetic studies show enhanced O-glycosylation and sialylation of holo-APP and marked accumulation of APP COOH-terminal fragments (CTFs). Surface biotinylation, live staining, and trafficking studies show increased surface accumulation of holo-APP and CTFs in deltaM1,2 cells resulting from enhanced surface delivery of newly synthesized APP. Expression of a loss-of-function PS1 mutant (D385A) or incubation of cells with gamma-secretase inhibitors also increases surface levels of holo-APP and CTFs. In contrast to APP, glycosylation and surface accumulation of another type I membrane protein, nicastrin, are markedly reduced in deltaM1,2 cells. Finally, expression of deltaM1,2 results in the increased assembly and surface expression of nicotinic acetylcholine receptors, illustrating that PS1s influence on protein trafficking extends beyond APP and other type I membrane protein substrates of gamma-secretase. Collectively, our findings provide evidence that PS1 regulates the glycosylation and intracellular trafficking of APP and select membrane proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Shannon K. O'Neill; Margaret Veselits; Miao Zhang; Christine M. Labno; Yanxia Cao; Alison Finnegan; Melissa Uccellini; Maria-Luisa Alegre; John C. Cambier; Marcus R. Clark
In autoimmune prone murine strains, sequential engagement of the B cell antigen receptor (BCR) on the cell surface and toll-like receptors (TLRs) in late endosomes is necessary and sufficient for secretion of autoantibodies. However, ubiquitous nucleoprotein self-antigens fail to elicit productive TLR activation, and break self-tolerance in anergic DNA-reactive B cells. The mechanisms limiting TLR activation in these cells are largely unknown. Here, we demonstrate that in anergic 3H9/Vκ8 and Ars/A1 B cells the normal endocytic transit of both the ligated BCR and TLR9 into late endosomes is abrogated. The BCR and TLR9 arrest together just outside late endosomes, indicating that they enter this compartment along a single, regulated endocytic route. Access to late endosomes could be restored by reversing anergy through several methods, including conferring genetic susceptibility to autoimmunity, complementing proximal BCR signaling or by preventing BCR binding to self-antigen. Downstream of the BCR, JNK, which is activated in naive but not anergic B cells, regulated entry into late endosomes. Restoration of BCR and TLR9 endocytic trafficking rescued TLR9 activation by BCR-captured ligands. These results indicate that B cell anergy is reinforced by the exclusion of both TLRs and their BCR captured ligands from subcellular environments necessary for TLR activation.
Journal of Immunology | 2007
Miao Zhang; Margaret Veselits; Shannon K. O'Neill; Ping Hou; Alagarsamy Lakku Reddi; Ilana Berlin; Masato Ikeda; Piers D. Nash; Richard Longnecker; Hamid Band; Marcus R. Clark
In both infection and autoimmunity, the development of high-affinity Abs and memory requires B cells to efficiently capture and process Ags for presentation to cognate T cells. Although a great deal is known about how Ags are processed, the molecular mechanisms by which the BCR captures Ag for processing are still obscure. In this study, we demonstrate that the Igβ component of the BCR is diubiquitinylated and that this is dependent on the E3 ligase Itch. Itch−/− B lymphocytes manifest both a defect in ligand-induced BCR internalization and endocytic trafficking to late endosomal Ag-processing compartments. In contrast, analysis of ubiquitinylation-defective receptors demonstrated that the attachment of ubiquitins to Igβ is required for endosomal sorting and for the presentation of Ag to T cells, yet, ubiquitinylation is dispensable for receptor internalization. Membrane-bound Igμ was not detectably ubiquitinylated nor were the conserved lysines in the mu cytosolic tail required for trafficking to late endosomes. These results demonstrate that ubiquitinylation of a singular substrate, Igβ, is required for a specific receptor trafficking event. However, they also reveal that E3 ligases play a broader role in multiple processes that determine the fate of Ag-engaged BCR complexes.
Molecular Immunology | 2011
Marcus R. Clark; Azusa Tanaka; Sarah E. Powers; Margaret Veselits
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
PLOS ONE | 2014
Margaret Veselits; Azusa Tanaka; Stanley Lipkowitz; Shannon K. O'Neill; Roger Sciammas; Alison Finnegan; Jian Zhang; Marcus R. Clark
Casitas B-lineage lymphoma-b (Cbl-b) is a ubiquitin ligase (E3) that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR) and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA) domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9) into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.
Nature Communications | 2018
Malay Mandal; Mark Maienschein-Cline; Patrick Maffucci; Margaret Veselits; Domenick E. Kennedy; Kaitlin Mclean; Michael K. Okoreeh; Sophiya Karki; Charlotte Cunningham-Rundles; Marcus R. Clark
Transcription factor (TF) networks determine cell fate in hematopoiesis. However, how TFs cooperate with other regulatory mechanisms to instruct transcription remains poorly understood. Here we show that in small pre-B cells, the lineage restricted epigenetic reader BRWD1 closes early development enhancers and opens the enhancers of late B lymphopoiesis to TF binding. BRWD1 regulates over 7000 genes to repress proliferative and induce differentiation programs. However, BRWD1 does not regulate the expression of TFs required for B lymphopoiesis. Hypogammaglobulinemia patients with BRWD1 mutations have B-cell transcriptional profiles and enhancer landscapes similar to those observed in Brwd1-/- mice. These data indicate that, in both mice and humans, BRWD1 is a master orchestrator of enhancer accessibility that cooperates with TF networks to drive late B-cell development.B-cell development is tightly regulated by transcription programs that are coordinated by transcription factors (TF) and locus accessibility. Here the authors show that, in mice and humans, the epigenetic reader BRWD1 inhibits and promotes the accessibility of enhancers for early and late B lymphopoiesis, respectively.
Journal of Experimental Medicine | 2017
Margaret Veselits; Azusa Tanaka; Yao-Qing Chen; Keith M. Hamel; Malay Mandal; Matheswaran Kandasamy; Balaji Manicassamy; Shannon K. O'Neill; Patrick C. Wilson; Roger Sciammas; Marcus R. Clark
A wealth of in vitro data has demonstrated a central role for receptor ubiquitination in endocytic sorting. However, how receptor ubiquitination functions in vivo is poorly understood. Herein, we report that ablation of B cell antigen receptor ubiquitination in vivo uncouples the receptor from CD19 phosphorylation and phosphatidylinositol 3-kinase (PI3K) signals. These signals are necessary and sufficient for accumulating phosphatidylinositol (3,4,5)-trisphosphate (PIP3) on B cell receptor–containing early endosomes and proper sorting into the MHC class II antigen-presenting compartment (MIIC). Surprisingly, MIIC targeting is dispensable for T cell–dependent immunity. Rather, it is critical for activating endosomal toll-like receptors and antiviral humoral immunity. These findings demonstrate a novel mechanism of receptor endosomal signaling required for specific peripheral immune responses.
Neurobiology of Aging | 2004
Daisuke Ito; John R. Walker; Charlie S. Thompson; Isabella Moroz; Margaret Veselits; Guilian Xu; David R. Borchelt; Antoine M. Hakim; Allen A. Fienberg; Gopal Thinakaran
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK. In addition, STC2 expression is also activated in neuronal cells by oxidative stress and hypoxia but not by several cellular stresses unrelated to the UPR. In contrast, expression of another homologue, STC1, is only upregulated by hypoxia independent of PERK or ATF4 expression. In vivo studies revealed that rat cortical neurons rapidly upregulate STC2 after transient middle cerebral artery occlusion. Finally, siRNA-mediated inhibition of STC2 expression renders N2a neuroblastoma cells and HeLa cells significantly more vulnerable to apoptotic cell death after treatment with thapsigargin, and overexpression of STC2 attenuated thapsigargin-induced cell death. Consequently, induced STC2 expression is an essential feature of survival component of the UPR.