Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margaret W. Leigh is active.

Publication


Featured researches published by Margaret W. Leigh.


American Journal of Respiratory and Critical Care Medicine | 2011

An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications

Raed A. Dweik; Peter B. Boggs; Serpil C. Erzurum; Charles G. Irvin; Margaret W. Leigh; Jon O. Lundberg; Anna-Carin Olin; Alan L. Plummer; D. Robin Taylor

BACKGROUND Measurement of fractional nitric oxide (NO) concentration in exhaled breath (Fe(NO)) is a quantitative, noninvasive, simple, and safe method of measuring airway inflammation that provides a complementary tool to other ways of assessing airways disease, including asthma. While Fe(NO) measurement has been standardized, there is currently no reference guideline for practicing health care providers to guide them in the appropriate use and interpretation of Fe(NO) in clinical practice. PURPOSE To develop evidence-based guidelines for the interpretation of Fe(NO) measurements that incorporate evidence that has accumulated over the past decade. METHODS We created a multidisciplinary committee with expertise in the clinical care, clinical science, or basic science of airway disease and/or NO. The committee identified important clinical questions, synthesized the evidence, and formulated recommendations. Recommendations were developed using pragmatic systematic reviews of the literature and the GRADE approach. RESULTS The evidence related to the use of Fe(NO) measurements is reviewed and clinical practice recommendations are provided. CONCLUSIONS In the setting of chronic inflammatory airway disease including asthma, conventional tests such as FEV(1) reversibility or provocation tests are only indirectly associated with airway inflammation. Fe(NO) offers added advantages for patient care including, but not limited to (1) detecting of eosinophilic airway inflammation, (2) determining the likelihood of corticosteroid responsiveness, (3) monitoring of airway inflammation to determine the potential need for corticosteroid, and (4) unmasking of otherwise unsuspected nonadherence to corticosteroid therapy.


The New England Journal of Medicine | 1995

A Controlled Study of Adenoviral-Vector–Mediated Gene Transfer in the Nasal Epithelium of Patients with Cystic Fibrosis

Kathy Hohneker; Zhaoqing Zhou; John C. Olsen; Terry L. Noah; Ping Chuan hu; Margaret W. Leigh; John F. Engelhardt; Lloyd J. Edwards; Kim R. Jones; Mariann Grossman; James M. Wilson; Larry G. Johnson; Richard C. Boucher

BACKGROUND Cystic fibrosis is a monogenic disease that deranges multiple systems of ion transport in the airways, culminating in chronic infection and destruction of the lung. The introduction of a normal copy of the cystic fibrosis transmembrane conductance regulator (CFTR) gene into the airway epithelium through gene transfer is an attractive approach to correcting the underlying defects in patients with cystic fibrosis. We tested the feasibility of gene therapy using adenoviral vectors in the nasal epithelium of such patients. METHODS An adenoviral vector containing the normal CFTR complementary DNA in four logarithmically increasing doses (estimated multiplicity of infection, 1, 10, 100, and 1000), or vehicle alone, was administered in a randomized, blinded fashion to the nasal epithelium of 12 patients with cystic fibrosis. Gene transfer was quantitated by molecular techniques that detected the expression of CFTR messenger RNA and by functional measurements of transepithelial potential differences (PDs) to assess abnormalities of ion transport specific to cystic fibrosis. The safety of this treatment was monitored by nasal lavage and biopsy to assess inflammation and vector replication. RESULTS The adenoviral vector was detected in nasal-lavage fluid by culture, the polymerase chain reaction (PCR), or both in a dose-dependent fashion for up to eight days after vector administration. There was molecular evidence of gene transfer by reverse-transcriptase PCR assays or in situ hybridization in five of six patients treated at the two highest doses. However, the percentage of epithelial cells transfected by the vector was very low (< 1 percent), and measurement of PD across the epithelium revealed no significant restoration of chloride transport or normalization of sodium transport. At the lower doses of vector, there were no toxic effects. However, at the highest dose there was mucosal inflammation in two of three patients. CONCLUSIONS In patients with cystic fibrosis, adenoviral-vector-mediated transfer of the CFTR gene did not correct functional defects in nasal epithelium, and local inflammatory responses limited the dose of adenovirus that could be administered to overcome the inefficiency of gene transfer.


Circulation | 2007

Congenital Heart Disease and Other Heterotaxic Defects in a Large Cohort of Patients With Primary Ciliary Dyskinesia

Marcus P. Kennedy; Heymut Omran; Margaret W. Leigh; Sharon D. Dell; Lucy Morgan; Paul L. Molina; Blair V. Robinson; Susan L. Minnix; Heike Olbrich; Thomas Severin; Peter Ahrens; Lars Lange; Hilda N. Morillas; Peadar G. Noone; Maimoona A. Zariwala

Background— Primary ciliary dyskinesia (PCD) is a recessive genetic disorder that is characterized by sinopulmonary disease and reflects abnormal ciliary structure and function. Situs inversus totalis occurs in ≈50% of PCD patients (Kartagener’s syndrome in PCD), and there are a few reports of PCD with heterotaxy (situs ambiguus), such as cardiovascular anomalies. Advances in diagnosis of PCD, such as genetic testing, allow the systematic investigation of this association. Methods and Results— The prevalence of heterotaxic defects was determined in 337 PCD patients by retrospective review of radiographic and ultrasound data. Situs solitus (normal situs) and situs inversus totalis were identified in 46.0% and 47.7% of patients, respectively, and 6.3% (21 patients) had heterotaxy. As compared with patients with situs solitus, those with situs abnormalities had more ciliary outer dynein arm defects, fewer inner dynein arm and central apparatus defects (P<0.001), and more mutations in ciliary outer dynein arm genes (DNAI1 and DNAH5; P=0.022). Seven of 12 patients with heterotaxy who were genotyped had mutations in DNAI1 or DNAH5. Twelve patients with heterotaxy had cardiac and/or vascular abnormalities, and most (8 of 12 patients) had complex congenital heart disease. Conclusions— At least 6.3% of patients with PCD have heterotaxy, and most of those have cardiovascular abnormalities. The prevalence of congenital heart disease with heterotaxy is 200-fold higher in PCD than in the general population (1:50 versus 1:10 000); thus, patients with PCD should have cardiac evaluation. Conversely, mutations in genes that adversely affect both respiratory and embryological nodal cilia are a significant cause of heterotaxy and congenital heart disease, and screening for PCD is indicated in those patients.


Genetics in Medicine | 2009

Clinical and genetic aspects of primary ciliary dyskinesia/kartagener syndrome

Margaret W. Leigh; Jessica E. Pittman; Johnny L. Carson; Thomas W. Ferkol; Sharon D. Dell; Stephanie D. Davis; Maimoona A. Zariwala

Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate (dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.


American Journal of Human Genetics | 2009

Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects.

Niki T. Loges; Heike Olbrich; Anita Becker-Heck; Karsten Häffner; Angelina Heer; Christina Reinhard; Miriam Schmidts; Andreas Kispert; Maimoona A. Zariwala; Margaret W. Leigh; Hanswalter Zentgraf; Horst Seithe; Gudrun Nürnberg; Peter Nürnberg; Richard Reinhardt; Heymut Omran

Genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility in primary ciliary dyskinesia (PCD). The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Here, we demonstrate that large genomic deletions, as well as point mutations involving LRRC50, are responsible for a distinct PCD variant that is characterized by a combined defect involving assembly of the ODAs and IDAs. Functional analyses showed that LRRC50 deficiency disrupts assembly of distally and proximally DNAH5- and DNAI2-containing ODA complexes, as well as DNALI1-containing IDA complexes, resulting in immotile cilia. On the basis of these findings, we assume that LRRC50 plays a role in assembly of distinct dynein-arm complexes.


Nature Genetics | 2013

DYX1C1 is required for axonemal dynein assembly and ciliary motility

Aarti Tarkar; Niki T. Loges; Christopher E. Slagle; Richard Francis; Gerard W. Dougherty; Joel V. Tamayo; Brett A. Shook; Marie E. Cantino; D. A. Schwartz; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Petra Pennekamp; Marouan Abouhamed; Rim Hjeij; Gabriele Köhler; Matthias Griese; You Li; Kristi Lemke; Nikolas Klena; Xiaoqin Liu; George C. Gabriel; Kimimasa Tobita; Martine Jaspers; Lucy Morgan; Adam J. Shapiro; Stef J.F. Letteboer; Dorus A. Mans; Johnny L. Carson

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).


American Journal of Roentgenology | 2007

High-Resolution CT of Patients with Primary Ciliary Dyskinesia

Marcus P. Kennedy; Peadar G. Noone; Margaret W. Leigh; Maimoona A. Zariwala; Susan L. Minnix; Paul L. Molina

OBJECTIVE High-resolution CT is an important tool in the detection and management of bronchiectasis, but there is little information about high-resolution CT findings in primary ciliary dyskinesia (PCD). We analyzed all high-resolution CT studies of the chest available for a cohort of PCD patients to identify an associated pattern of high-resolution CT changes. MATERIALS AND METHODS High-resolution CT studies were available for 45 PCD patients from 42 families with ranges of age and disease severity. The images were assessed for severity and distribution of bronchiectasis, peribronchial thickening, mucous plugging, and other findings. A bronchiectasis severity score was calculated. CT findings were correlated with phenotypic findings, including situs type, ciliary ultrastructural defect, nasal level of nitric oxide, forced expiratory volume in 1 second, and microbiologic findings in the airways. RESULTS Twenty-nine adults (mean age, 42 +/- 15 years; age range, 21-73 years) and 16 children (mean age, 8 +/- 4 years; age range, 1-14 years) were included; 26 (58%) of the patients were women or girls. Situs inversus totalis (38%) or heterotaxy (18%) was identified in 56% of the patients. A high (9%) prevalence of pectus excavatum was identified. High-resolution CT of all of the adult and 56% of the pediatric patients showed bronchiectasis in a predominantly middle and lower lobe distribution. The right middle lobe was most commonly involved. Bronchiectasis severity score correlated with older age and worse pulmonary function. CONCLUSION High-resolution CT shows that pulmonary disease related to PCD predominantly involves the middle and lower lobes of the lungs. In adults, high-resolution CT findings negative for bronchiectasis may have a role in excluding the diagnosis of PCD. Correlation of severity of disease on high-resolution CT with patient phenotype gives further insight into the diversity and natural history of PCD.


Annals of the American Thoracic Society | 2013

Standardizing Nasal Nitric Oxide Measurement as a Test for Primary Ciliary Dyskinesia

Margaret W. Leigh; Milan J. Hazucha; Kunal K. Chawla; Brock R. Baker; Adam J. Shapiro; David E. Brown; Lisa M. LaVange; Bethany J. Horton; Bahjat F. Qaqish; Johnny L. Carson; Stephanie D. Davis; Sharon D. Dell; Thomas W. Ferkol; Jeffrey J. Atkinson; Kenneth N. Olivier; Scott D. Sagel; Margaret Rosenfeld; Carlos Milla; Hye Seung Lee; Jeffrey P. Krischer; Maimoona A. Zariwala

RATIONALE Several studies suggest that nasal nitric oxide (nNO) measurement could be a test for primary ciliary dyskinesia (PCD), but the procedure and interpretation have not been standardized. OBJECTIVES To use a standard protocol for measuring nNO to establish a disease-specific cutoff value at one site, and then validate at six other sites. METHODS At the lead site, nNO was prospectively measured in individuals later confirmed to have PCD by ciliary ultrastructural defects (n = 143) or DNAH11 mutations (n = 6); and in 78 healthy and 146 disease control subjects, including individuals with asthma (n = 37), cystic fibrosis (n = 77), and chronic obstructive pulmonary disease (n = 32). A disease-specific cutoff value was determined, using generalized estimating equations (GEEs). Six other sites prospectively measured nNO in 155 consecutive individuals enrolled for evaluation for possible PCD. MEASUREMENTS AND MAIN RESULTS At the lead site, nNO values in PCD (mean ± standard deviation, 20.7 ± 24.1 nl/min; range, 1.5-207.3 nl/min) only rarely overlapped with the nNO values of healthy control subjects (304.6 ± 118.8; 125.5-867.0 nl/min), asthma (267.8 ± 103.2; 125.0-589.7 nl/min), or chronic obstructive pulmonary disease (223.7 ± 87.1; 109.7-449.1 nl/min); however, there was overlap with cystic fibrosis (134.0 ± 73.5; 15.6-386.1 nl/min). The disease-specific nNO cutoff value was defined at 77 nl/minute (sensitivity, 0.98; specificity, >0.999). At six other sites, this cutoff identified 70 of the 71 (98.6%) participants with confirmed PCD. CONCLUSIONS Using a standardized protocol in multicenter studies, nNO measurement accurately identifies individuals with PCD, and supports its usefulness as a test to support the clinical diagnosis of PCD.


Thorax | 2012

Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure

Margaret W. Leigh; Johnny L. Carson; Stephanie D. Davis; Sharon D. Dell; Thomas W. Ferkol; Kenneth N. Olivier; Scott D. Sagel; Margaret Rosenfeld; Kimberlie A. Burns; Susan L. Minnix; Michael C. Armstrong; Adriana Lori; Milan J. Hazucha; Niki T. Loges; Heike Olbrich; Anita Becker-Heck; Miriam Schmidts; Claudius Werner; Heymut Omran; Maimoona A. Zariwala

Rationale Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterised by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognised to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in dynein axonemal heavy chain 11 (DNAH11). Objectives To test further for mutant DNAH11 as a cause of PCD, DNAH11 was sequenced in patients with a PCD clinical phenotype, but no known genetic aetiology. Methods 82 exons and intron/exon junctions in DNAH11 were sequenced in 163 unrelated patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure (n=58), defects in outer and/or inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23 without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/or low nasal nitric oxide (n=6). Additionally, DNAH11 was sequenced in 13 subjects with isolated situs abnormalities to see if mutant DNAH11 could cause situs defects without respiratory disease. Results Of the 58 unrelated patients with PCD with normal ultrastructure, 13 (22%) had two (biallelic) mutations in DNAH11; and two patients without ultrastructural analysis had biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAH11. Of the 35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or loss-of-function splice-site mutations. Conclusions Mutations in DNAH11 are a common cause of PCD in patients without ciliary ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this challenging group of patients.


Circulation | 2012

High Prevalence of Respiratory Ciliary Dysfunction in Congenital Heart Disease Patients With Heterotaxy

Nader Nakhleh; Richard Francis; Rachel Giese; Xin Tian; You Li; Maimoona A. Zariwala; Hisato Yagi; Omar Khalifa; Safina Kureshi; Bishwanath Chatterjee; Steven L. Sabol; Matthew W. Swisher; Patricia S. Connelly; Matthew P. Daniels; Ashok Srinivasan; Karen Kuehl; Nadav Kravitz; Kimberlie A. Burns; Iman Sami; Heymut Omran; M. Michael Barmada; Kenneth N. Olivier; Kunal K. Chawla; Margaret W. Leigh; Richard A. Jonas; Linda Leatherbury; Cecilia W. Lo

Background— Patients with congenital heart disease (CHD) and heterotaxy show high postsurgical morbidity/mortality, with some developing respiratory complications. Although this finding is often attributed to the CHD, airway clearance and left-right patterning both require motile cilia function. Thus, airway ciliary dysfunction (CD) similar to that of primary ciliary dyskinesia (PCD) may contribute to increased respiratory complications in heterotaxy patients. Methods and Results— We assessed 43 CHD patients with heterotaxy for airway CD. Videomicrocopy was used to examine ciliary motion in nasal tissue, and nasal nitric oxide (nNO) was measured; nNO level is typically low with PCD. Eighteen patients exhibited CD characterized by abnormal ciliary motion and nNO levels below or near the PCD cutoff values. Patients with CD aged >6 years show increased respiratory symptoms similar to those seen in PCD. Sequencing of all 14 known PCD genes in 13 heterotaxy patients with CD, 12 without CD, 10 PCD disease controls, and 13 healthy controls yielded 0.769, 0.417, 1.0, and 0.077 novel variants per patient, respectively. One heterotaxy patient with CD had the PCD causing DNAI1 founder mutation. Another with hyperkinetic ciliary beat had 2 mutations in DNAH11, the only PCD gene known to cause hyperkinetic beat. Among PCD patients, 2 had known PCD causing CCDC39 and CCDC40 mutations. Conclusions— Our studies show that CHD patients with heterotaxy have substantial risk for CD and increased respiratory disease. Heterotaxy patients with CD were enriched for mutations in PCD genes. Future studies are needed to assess the potential benefit of prescreening and prophylactically treating heterotaxy patients for CD.

Collaboration


Dive into the Margaret W. Leigh's collaboration.

Top Co-Authors

Avatar

Maimoona A. Zariwala

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas W. Ferkol

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johnny L. Carson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Scott D. Sagel

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R Knowles

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenneth N. Olivier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Milan J. Hazucha

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge