Margarita A. Dmitrienko
Tomsk Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margarita A. Dmitrienko.
Journal of Hazardous Materials | 2017
Margarita A. Dmitrienko; Galina S. Nyashina; P. A. Strizhak
Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal.
Science of The Total Environment | 2017
Margarita A. Dmitrienko; P. A. Strizhak
High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SOx), nitrogen (NOx) and carbon (CO, CO2) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore.
Science of The Total Environment | 2018
Margarita A. Dmitrienko; P. A. Strizhak
This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel.
Journal of Hazardous Materials | 2018
Galina S. Nyashina; K. Yu. Vershinina; Margarita A. Dmitrienko; P. A. Strizhak
A promising solution to many problems that thermal power industry is facing today would be switching from conventional coal dust combustion to coal-water slurries containing petrochemicals (CWSP). Here, we perform an experimental study of the most hazardous anthropogenic emissions (sulfur and nitrogen oxides) from the combustion of high-potential CWSP. We identify the main benefits and potential drawbacks of using CWSP in thermal power industry. A set of components and additives to CWSP are explored that significantly affect the environmental and energy performance of fuels. The anthropogenic emissions from the combustion of CWSP made of widespread coal and oil processing wastes are no higher than those from coal dust combustion. Using specialized additives to CWSP, we can change the concentrations of NOx and SOx several times. The most appealing additives to CWSP are sawdust, straw, charcoal, limestone, and glycerol. They provide better environmental, economic, and energy performance and improve the rheological properties of CWSP. Waste oils and oil sludge added to CWSP may impair the environmental performance but boost the cost and energy efficiency. Using coal-water slurries containing petrochemicals as a fuel at thermal power plants is an environmentally friendly as well as cost- and energy-efficient way to recover industrial wastes.
Environmental Pollution | 2018
Margarita A. Dmitrienko; Jean Claude Legros; P. A. Strizhak
The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NOx and SOx emissions but leaves CO and CO2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO2, NOx, and SOx) of both CWS and CWSP technologies relies on low-temperature combustion.
Journal of Cleaner Production | 2018
Margarita A. Dmitrienko; Galina S. Nyashina; P. A. Strizhak
EPJ Web of Conferences | 2016
Margarita A. Dmitrienko; Galina S. Nyashina; P. A. Strizhak
MATEC Web of Conferences | 2016
Margarita A. Dmitrienko; Galina S. Nyashina; Ksenia Yu. Vershinina; Sergey Yu. Lyrschikov
EPJ Web of Conferences | 2016
Timur R. Valiullin; Margarita A. Dmitrienko; P. A. Strizhak
MATEC Web of Conferences | 2015
Margarita A. Dmitrienko; Maxim V. Piskunov; P. A. Strizhak; Anastasia Anatolievna Shcherbinina