Margarita V. Chibalina
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margarita V. Chibalina.
Journal of Clinical Investigation | 2015
Makoto Shigeto; Reshma Ramracheya; Andrei I. Tarasov; Chae Young Cha; Margarita V. Chibalina; Benoit Hastoy; Koenraad Philippaert; Thomas Reinbothe; Nils J.G. Rorsman; Albert Salehi; William Sones; Elisa Vergari; Cathryn Weston; Julia Gorelik; Masashi Katsura; Viacheslav O. Nikolaev; Rudi Vennekens; Manuela Zaccolo; Antony Galione; Paul Johnson; Kohei Kaku; Graham Ladds; Patrik Rorsman
Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca(2+) channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na(+). The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells.
The Journal of Physiology | 2014
Quan Zhang; Margarita V. Chibalina; Martin Bengtsson; Lukas N. Groschner; Reshma Ramracheya; Nils J.G. Rorsman; Veronika Leiss; Mohammed A. Nassar; Andrea Welling; Fiona M. Gribble; Frank Reimann; Franz Hofmann; John N. Wood; Frances M. Ashcroft; Patrik Rorsman
α‐ and β‐cells express both Nav1.3 and Nav1.7 Na+ channels but in different relative amounts. The differential expression explains the different properties of Na+ currents in α‐ and β‐cells. Nav1.3 is the functionally important Na+ channel α subunit in both α‐ and β‐cells. Islet Nav1.7 channels are locked in an inactive state due to an islet cell‐specific factor.
Nature Communications | 2016
Melissa F. Brereton; Maria Rohm; Kenju Shimomura; Christian Holland; Sharona Tornovsky-Babeay; Daniela Dadon; Michaela Iberl; Margarita V. Chibalina; Sheena Lee; Benjamin Glaser; Yuval Dor; Patrik Rorsman; Anne Clark; Frances M. Ashcroft
Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes.
Diabetes | 2016
Stephan C. Collins; Hyun Woong Do; Benoit Hastoy; Alison Hugill; Julie Adam; Margarita V. Chibalina; Juris Galvanovskis; Mahdieh Godazgar; Sheena Lee; Michelle Goldsworthy; S Albert Salehi; Andrei I. Tarasov; Anders H. Rosengren; Roger D. Cox; Patrik Rorsman
The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin–secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.
Journal of Clinical Investigation | 2017
Nikhil R. Gandasi; Peng Yin; Michela Riz; Margarita V. Chibalina; Giuliana Cortese; Per-Eric Lund; Victor Matveev; Patrik Rorsman; Arthur Sherman; Morten Gram Pedersen; Sebastian Barg
Loss of first-phase insulin secretion is an early sign of developing type 2 diabetes (T2D). Ca2+ entry through voltage-gated L-type Ca2+ channels triggers exocytosis of insulin-containing granules in pancreatic &bgr; cells and is required for the postprandial spike in insulin secretion. Using high-resolution microscopy, we have identified a subset of docked insulin granules in human &bgr; cells and rat-derived clonal insulin 1 (INS1) cells for which localized Ca2+ influx triggers exocytosis with high probability and minimal latency. This immediately releasable pool (IRP) of granules, identified both structurally and functionally, was absent in &bgr; cells from human T2D donors and in INS1 cells cultured in fatty acids that mimic the diabetic state. Upon arrival at the plasma membrane, IRP granules slowly associated with 15 to 20 L-type channels. We determined that recruitment depended on a direct interaction with the synaptic protein Munc13, because expression of the II–III loop of the channel, the C2 domain of Munc13-1, or of Munc13-1 with a mutated C2 domain all disrupted L-type channel clustering at granules and ablated fast exocytosis. Thus, rapid insulin secretion requires Munc13-mediated recruitment of L-type Ca2+ channels in close proximity to insulin granules. Loss of this organization underlies disturbed insulin secretion kinetics in T2D.
Scientific Reports | 2016
Yusuke Kazama; Kotaro Ishii; Wataru Aonuma; Tokihiro Ikeda; Hiroki Kawamoto; Ayako Koizumi; Dmitry A. Filatov; Margarita V. Chibalina; Roberta Bergero; Deborah Charlesworth; Tomoko Abe; Shigeyuki Kawano
Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.
Cell Reports | 2017
Julie Adam; Reshma Ramracheya; Margarita V. Chibalina; Nicola Ternette; Alexander Hamilton; Andrei I. Tarasov; Quan Zhang; Eduardo Rebelato; Nils J.G. Rorsman; Rafael Martín-del-Río; Amy Lewis; Gizem Özkan; Hyun Woong Do; Peter Spégel; Kaori Saitoh; Keiko Kato; Kaori Igarashi; Benedikt M. Kessler; Christopher W. Pugh; Jorge Tamarit-Rodriguez; Hindrik Mulder; Anne Clark; Norma Frizzell; Tomoyoshi Soga; Frances M. Ashcroft; Andrew Silver; Patrick J. Pollard; Patrik Rorsman
Summary We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.
Cell Reports | 2018
Linford J. B. Briant; Michael S. Dodd; Margarita V. Chibalina; Nils J.G. Rorsman; Paul Johnson; Peter Carmeliet; Patrik Rorsman; Jakob G. Knudsen
Summary Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet α cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from α cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing α cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the KATP channel, but instead due to reduced operation of the Na+-K+ pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na+-K+ pump is an important ATP-dependent regulator of α cell function.
The Journal of Physiology | 2018
Mahdieh Godazgar; Quan Zhang; Margarita V. Chibalina; Patrik Rorsman
Na+ current inactivation is biphasic in insulin‐secreting cells, proceeding with two voltage dependences that are half‐maximal at ∼−100 mV and −60 mV. Inactivation of voltage‐gated Na+ (NaV) channels occurs at ∼30 mV more negative voltages in insulin‐secreting Ins1 and primary β‐cells than in HEK, CHO or glucagon‐secreting αTC1‐6 cells. The difference in inactivation between Ins1 and non‐β‐cells persists in the inside‐out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β‐cells, but not in HEK cells, inactivation of a single NaV subtype is biphasic and follows two voltage dependences separated by 30–40 mV. We propose that NaV channels adopt different inactivation behaviours depending on the local membrane environment.
Physiological Reports | 2018
Reshma Ramracheya; Caroline Chapman; Margarita V. Chibalina; Haiqiang Dou; Caroline Miranda; Alejandro González; Yusuke Moritoh; Makoto Shigeto; Quan Zhang; Matthias Braun; Anne Clark; Paul Johnson; Patrik Rorsman; Linford J. B. Briant
Glucagon is the bodys main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon‐like peptide‐1 (GLP‐1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP‐1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only <0.5% of the α‐cells possess detectable GLP‐1R immunoreactivity. Despite this, GLP‐1 inhibited glucagon secretion by 50–70%. This was due to a direct effect on α‐cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor‐2 antagonist CYN154806. The inhibitory effect of GLP‐1 on glucagon secretion was prevented by the PKA‐inhibitor Rp‐cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP‐1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q‐type Ca2+ channels. In agreement with this, GLP‐1 and ω‐agatoxin (a blocker of P/Q‐type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+]o, and these effects were not additive. Intracellular application of cAMP inhibited depolarization‐evoked exocytosis in individual α‐cells by a PKA‐dependent (Rp‐cAMPS‐sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP‐1 involves activation of the few GLP‐1 receptors present in the α‐cell membrane. The resulting small elevation of cAMP leads to PKA‐dependent inhibition of P/Q‐type Ca2+ channels and suppression of glucagon exocytosis.