Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margarita Zayas is active.

Publication


Featured researches published by Margarita Zayas.


Nature Cell Biology | 2007

The lipid droplet is an important organelle for hepatitis C virus production

Yusuke Miyanari; Kimie Atsuzawa; Nobuteru Usuda; Koichi Watashi; Takayuki Hishiki; Margarita Zayas; Ralf Bartenschlager; Takaji Wakita; Makoto Hijikata; Kunitada Shimotohno

The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.


PLOS Pathogens | 2008

Essential Role of Domain III of Nonstructural Protein 5A for Hepatitis C Virus Infectious Particle Assembly

Nicole Appel; Margarita Zayas; Sven Miller; Jacomine Krijnse-Locker; Torsten Schaller; Peter Friebe; Stephanie Kallis; Ulrike Engel; Ralf Bartenschlager

Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.


PLOS Pathogens | 2009

Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations.

Thomas Pietschmann; Margarita Zayas; Philip Meuleman; Gang Long; Nicole Appel; George Koutsoudakis; Stephanie Kallis; Geert Leroux-Roels; Volker Lohmann; Ralf Bartenschlager

With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.


Journal of Virology | 2010

Role of Annexin A2 in the Production of Infectious Hepatitis C Virus Particles

Perdita Backes; Doris Quinkert; Simon Reiss; Marco Binder; Margarita Zayas; Ursula Rescher; Volker Gerke; Ralf Bartenschlager; Volker Lohmann

ABSTRACT Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.


Gastroenterology | 2014

Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication.

Carola Berger; Inés Romero-Brey; Danijela Radujkovic; Raphaël Terreux; Margarita Zayas; David L. Paul; Christian Harak; Simone Hoppe; Min Gao; François Penin; Volker Lohmann; Ralf Bartenschlager

BACKGROUND & AIMS Direct-acting antivirals that target nonstructural protein 5A (NS5A), such as daclatasvir, have high potency against the hepatitis C virus (HCV). They are promising clinical candidates, yet little is known about their antiviral mechanisms. We investigated the mechanisms of daclatasvir derivatives. METHODS We used a combination of biochemical assays, in silico docking models, and high-resolution imaging to investigate inhibitor-induced changes in properties of NS5A, including its interaction with phosphatidylinositol-4 kinase IIIα and induction of the membranous web, which is the site of HCV replication. Analyses were conducted with replicons, infectious virus, and human hepatoma cells that express a HCV polyprotein. Studies included a set of daclatasvir derivatives and HCV variants with the NS5A inhibitor class-defining resistance mutation Y93H. RESULTS NS5A inhibitors did not affect NS5A stability or dimerization. A daclatasvir derivative interacted with NS5A and molecular docking studies revealed a plausible mode by which the inhibitor bound to NS5A dimers. This interaction was impaired in mutant forms of NS5A that are resistant to daclatavir, providing a possible explanation for the reduced sensitivity of the HCV variants to this drug. Potent NS5A inhibitors were found to block HCV replication by preventing formation of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4 kinase IIIα. Correlative light-electron microscopy revealed unequivocally that NS5A inhibitors had no overall effect on the subcellular distribution of NS5A, but completely prevented biogenesis of the membranous web. CONCLUSIONS Highly potent inhibitors of NS5A, such as daclatasvir, block replication of HCV RNA at the stage of membranous web biogenesis-a new paradigm in antiviral therapy.


PLOS Pathogens | 2010

A Major Determinant of Cyclophilin Dependence and Cyclosporine Susceptibility of Hepatitis C Virus Identified by a Genetic Approach

Feng Yang; Jason M. Robotham; Henry Grise; Stephen D. Frausto; Vanesa Madan; Margarita Zayas; Ralf Bartenschlager; Margaret Robinson; Andrew E. Greenstein; Anita Nag; Timothy M. Logan; Ewa A. Bienkiewicz; Hengli Tang

Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCVs dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and four putative proline substrates of CyPA were mapped to the vicinity of the DY motif. Circular dichroism analysis of wild-type and mutant NS5A peptides indicated that the D316E/Y317N mutations (DEYN) induced a conformational change at a major CyPA-binding site. Furthermore, nuclear magnetic resonance experiments suggested that NS5A with DEYN mutations adopts a more extended, functional conformation in the putative CyPA substrate site in domain II. Finally, the importance of this major CsA-sensitivity determinant was confirmed in additional genotypes (GT) other than GT 2a. This study describes a new genetic approach to identifying viral targets of cellular cofactors and identifies a major regulator of HCVs susceptibility to CsA and its derivatives that are currently in clinical trials.


Journal of Hepatology | 2015

Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A

M.-S. Hiet; Oliver Bauhofer; Margarita Zayas; Hanna Roth; Yasuhito Tanaka; Peter Schirmacher; Joschka Willemsen; Oliver Grünvogel; Silke Bender; Marco Binder; Volker Lohmann; Vincent Lotteau; Alessia Ruggieri; Ralf Bartenschlager

BACKGROUND & AIMS Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein playing a crucial role in diverse steps of the viral replication cycle and perturbing multiple host cell pathways. We showed previously that removal of a region in domain 2 (D2) of NS5A (mutant NS5A(D2Δ)) is dispensable for viral replication in hepatoma cell lines. By using a mouse model and immune-competent cell systems, we studied the role of D2 in controlling the innate immune response. METHODS In vivo replication competence of NS5A(D2Δ) was studied in transgenic mice with human liver xenografts. Results were validated using primary human hepatocytes (PHHs) and mechanistic analyses were conducted in engineered Huh7 hepatoma cells with reconstituted innate signaling pathways. RESULTS Although the deletion in NS5A removed most of the interferon (IFN) sensitivity determining-region, mutant NS5A(D2Δ) was as sensitive as the wild type to IFN-α and IFN-λ in vitro, but severely attenuated in vivo. This attenuation could be recapitulated in PHHs and was linked to higher activation of the IFN response, concomitant with reduced viral replication and virus production. Importantly, immune-reconstituted Huh7-derived cell lines revealed a sequential activation of the IFN-response via RIG-I (retinoic acid-inducible gene I) and MDA5 (Myeloma differentiation associated factor 5), respectively, that was significantly higher in the case of the mutant lacking most of NS5A D2. CONCLUSIONS Our study reveals an important role of NS5A D2 for suppression of the IFN response that is activated by HCV via RIG-I and MDA5 in a sequential manner.


PLOS Pathogens | 2016

Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A

Margarita Zayas; Gang Long; Vanesa Madan; Ralf Bartenschlager

Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.


Virology | 2014

The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production

Carol-Ann Eberle; Margarita Zayas; Alexey Stukalov; Andreas Pichlmair; Gualtiero Alvisi; André C. Müller; Keiryn L. Bennett; Ralf Bartenschlager; Giulio Superti-Furga

Hepatitis C virus (HCV) is a considerable global health and economic burden. The HCV nonstructural protein (NS) 5A is essential for the viral life cycle. The ability of NS5A to interact with different host and viral proteins allow it to manipulate cellular pathways and regulate viral processes, including RNA replication and virus particle assembly. As part of a proteomic screen, we identified several NS5A-binding proteins, including the lysine methyltransferase SET and MYND domain containing protein 3 (SMYD3). We confirmed the interaction in the context of viral replication by co-immunoprecipitation and co-localization studies. Mutational analyses revealed that the MYND-domain of SMYD3 and domain III of NS5A are required for the interaction. Overexpression of SMYD3 resulted in decreased intracellular and extracellular virus titers, whilst viral RNA replication remained unchanged, suggesting that SMYD3 negatively affects HCV particle production in a NS5A-dependent manner.


RNA | 2016

Corrigendum: Conserved RNA secondary structures and long-range interactions in hepatitis C viruses

Markus Fricke; Nadia Dünnes; Margarita Zayas; Ralf Bartenschlager; Michael Niepmann; Manja Marz

In the Discussion section (first paragraph, third sentence) on page 105 of the above-noted article, the sentence “The RNA architectures identified in our study were not predicted by in silico approaches (Pervouchine 2014), nor were they detected using recent high-throughput RNA structure sequencing techniques (Daines et al. 2011; Li et al. 2012)” was not clear and should instead read as follows: “The RNA bidirectional structural architectures identified in our study were not detected using recent high-throughput RNA structure sequencing techniques (Daines et al. 2011; Li et al. 2012), nor were they discovered by in silico approaches, although stem II of the Drosophila srp pre-mRNA was predicted (Raker et al. 2009; Pervouchine 2014).” Accordingly, the following reference should be included in the References section: Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. 2009. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res 37: 4533–4544. The authors apologize for any confusion this may have caused. This article has been corrected in both the PDF and full-text HTML files online.

Collaboration


Dive into the Margarita Zayas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Long

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Binder

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge