Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margherita Brindisi is active.

Publication


Featured researches published by Margherita Brindisi.


Journal of Neurochemistry | 2012

Developing β-secretase inhibitors for treatment of Alzheimer’s disease

Arun K. Ghosh; Margherita Brindisi; Jordan Tang

J. Neurochem. (2012) 120 (Suppl. 1), 71–83.


Journal of Medicinal Chemistry | 2015

Organic carbamates in drug design and medicinal chemistry.

Arun K. Ghosh; Margherita Brindisi

The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug–target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.


Journal of Medicinal Chemistry | 2009

Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior.

Stefania Butini; Sandra Gemma; Giuseppe Campiani; Silvia Franceschini; Francesco Trotta; Marianna Borriello; Nicoletta Ceres; Sindu Ros; Salvatore Sanna Coccone; Matteo Bernetti; Meri De Angelis; Margherita Brindisi; Vito Nacci; Isabella Fiorini; Ettore Novellino; Alfredo Cagnotto; Tiziana Mennini; Karin Sandager-Nielsen; Jesper T. Andreasen; Jørgen Scheel-Krüger; Jens D. Mikkelsen; Caterina Fattorusso

Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c-fos expression in mesocorticolimbic areas, confirmed an atypical antipsychotic profile of 5i in vivo, characterized by the absence of catalepsy at antipsychotic dose.


Journal of Medicinal Chemistry | 2008

Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents.

Caterina Fattorusso; Giuseppe Campiani; Gagan Kukreja; Marco Persico; Stefania Butini; Maria Pia Romano; Maria Altarelli; Sindu Ros; Margherita Brindisi; Luisa Savini; Ettore Novellino; Vito Nacci; Ernesto Fattorusso; Silvia Parapini; Nicoletta Basilico; Donatella Taramelli; Vanessa Yardley; Simon L. Croft; Marianna Borriello; Sandra Gemma

Malaria is a major health problem in poverty-stricken regions where new antiparasitic drugs are urgently required at an affordable price. We report herein the design, synthesis, and biological investigation of novel antimalarial agents with low potential to develop resistance and structurally based on a highly conjugated scaffold. Starting from a new hit, the designed modifications were performed hypothesizing a specific interaction with free heme and generation of radical intermediates. This approach provided antimalarials with improved potency against chloroquine-resistant plasmodia over known drugs. A number of structure-activity relationship (SAR) trends were identified and among the analogues synthesized, the pyrrolidinylmethylarylidene and the imidazole derivatives 5r, 5t, and 8b were found as the most potent antimalarial agents of the new series. The mechanism of action of the novel compounds was investigated and their in vivo activity was assessed.


Journal of Medicinal Chemistry | 2008

Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors

Stefania Butini; Giuseppe Campiani; Marianna Borriello; Sandra Gemma; Alessandro Panico; Marco Persico; Bruno Catalanotti; Sindu Ros; Margherita Brindisi; Marianna Agnusdei; Isabella Fiorini; Vito Nacci; Ettore Novellino; Tatyana Belinskaya; Ashima Saxena; Caterina Fattorusso

Protein conformational fluctuations are critical for biological functions, although the relationship between protein motion and function has yet to be fully explored. By a thorough bioinformatics analysis of cholinesterases (ChEs), we identified specific hot spots, responsible for protein fluctuations and functions, and those active-site residues that play a role in modulating the cooperative network among the key substructures. This drew the optimization of our design strategy to discover potent and reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase (hAChE and hBuChE) that selectively interact with specific protein substructures. Accordingly, two tricyclic moieties differently spaced by functionalized linkers were investigated as molecular yardsticks to probe the finest interactions with specific hot spots in the hChE gorge. A number of SAR trends were identified, and the multisite inhibitors 3a and 3d were found to be the most potent inhibitors of hBuChE and hAChE known to date.


Progress in Neurobiology | 2017

Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease.

Lhassane Ismaili; Bernard Refouvelet; Mohamed Benchekroun; Simone Brogi; Margherita Brindisi; Sandra Gemma; Giuseppe Campiani; Slavica Filipic; Danica Agbaba; Gerard Esteban; Mercedes Unzeta; Katarina Nikolic; Stefania Butini; José Marco-Contelles

Alzheimers disease is a multifactorial and fatal neurodegenerative disorder characterized by decline of cholinergic function, deregulation of other neurotransmitter systems, β-amyloid fibril deposition, and β-amyloid oligomers formation. Based on the involvement of a relevant number of biological systems in Alzheimers disease progression, multitarget compounds may enable therapeutic efficacy. Accordingly, compounds possessing, besides anticholinergic activity and β-amyloid aggregation inhibition properties, metal chelating and/or nitric oxide releasing properties with additional antioxidant capacity were developed. Other targets relevant to Alzheimers disease have also been considered in the last years for producing multitarget compounds such as β-secretase, monoamino oxidases, serotonin receptors and sigma 1 receptors. The purpose of this review will be to highlight recent reports on the development of multitarget compounds for Alzheimers disease published within the last years focusing on multifunctional ligands characterized by tacrine-like and donepezil-like structures.


Journal of Medicinal Chemistry | 2009

Novel, potent, and selective quinoxaline-based 5-HT3 receptor ligands. 1. Further structure-activity relationships and pharmacological characterization

Stefania Butini; Roberta Budriesi; Michel Hamon; Elena Morelli; Sandra Gemma; Margherita Brindisi; Giuseppe Borrelli; Ettore Novellino; Isabella Fiorini; Pierfranco Ioan; Alberto Chiarini; Alfredo Cagnotto; Tiziana Mennini; Claudia Fracasso; Silvio Caccia; Giuseppe Campiani

We investigated the pharmacological profile of a novel series of quinoxaline-based 5-HT(3) receptor ligands bearing an extra basic moiety on the piperazine N-4. High affinity and selectivity were dependent on the electronic properties of the substituents, and at cardiac level 3a and 3c modulated chronotropy but not inotropy. In von Bezold-Jarisch reflex test 3a-c were partial agonists while 3i was a full agonist. Preliminary pharmacokinetic studies indicated that 3a is a brain penetrating agent.


ACS Medicinal Chemistry Letters | 2013

Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation.

Stefania Butini; Margherita Brindisi; Simone Brogi; Samuele Maramai; Egeria Guarino; Alessandro Panico; Ashima Saxena; Ved Chauhan; Raffaella Colombo; Laura Verga; Ersilia De Lorenzi; Manuela Bartolini; Vincenza Andrisano; Ettore Novellino; Giuseppe Campiani; Sandra Gemma

In order to identify novel Alzheimers modifying pharmacological tools, we developed bis-tacrines bearing a peptide moiety for specific interference with surface sites of human acetylcholinesterase (hAChE) binding amyloid-beta (Aβ). Accordingly, compounds 2a-c proved to be inhibitors of hAChE catalytic and noncatalytic functions, binding the catalytic and peripheral sites, interfering with Aβ aggregation and with the Aβ self-oligomerization process (2a). Compounds 2a-c in complex with TcAChE span the gorge with the bis-tacrine system, and the peptide moieties bulge outside the gorge in proximity of the peripheral site. These moieties are likely responsible for the observed reduction of hAChE-induced Aβ aggregation since they physically hamper Aβ binding to the enzyme surface. Moreover, 2a was able to significantly interfere with Aβ self-oligomerization, while 2b,c showed improved inhibition of hAChE-induced Aβ aggregation.


CNS Neuroscience & Therapeutics | 2014

Disease modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation

Simone Brogi; Stefania Butini; Samuele Maramai; Raffaella Colombo; Laura Verga; Cristina Lanni; Ersilia De Lorenzi; Stefania Lamponi; Marco Andreassi; Manuela Bartolini; Vincenza Andrisano; Ettore Novellino; Giuseppe Campiani; Margherita Brindisi; Sandra Gemma

We recently described multifunctional tools (2a–c) as potent inhibitors of human Cholinesterases (ChEs) also able to modulate events correlated with Aβ aggregation. We herein propose a thorough biological and computational analysis aiming at understanding their mechanism of action at the molecular level.


Current Topics in Medicinal Chemistry | 2013

The Structural Evolution of β-Secretase Inhibitors: A Focus on the Development of Small-Molecule Inhibitors

Stefania Butini; Simone Brogi; Ettore Novellino; Giuseppe Campiani; Arun K. Ghosh; Margherita Brindisi; Sandra Gemma

Effective treatment of Alzheimers disease (AD) remains a critical unmet need in medicine. The lack of useful treatment for AD led to an intense search for novel therapies based on the amyloid hypothesis, which states that amyloid β-42 (Aβ42) plays an early and crucial role in all cases of AD. β-Secretase (also known as BACE-1 β-site APP-cleaving enzyme, Asp-2 or memapsin-2) is an aspartyl protease representing the rate limiting step in the generation of Aβ peptide fragments, therefore it could represent an important target in the steady hunt for a disease-modifying treatment. Generally, β-secretase inhibitors are grouped into two families: peptidomimetic and nonpeptidomimetic inhibitors. However, irrespective of the class, serious challenges with respect to blood-brain barrier (BBB) penetration and selectivity still remain. Discovering a small molecule inhibitor of β-secretase represents an unnerving challenge but, due to its significant potential as a therapeutic target, growing efforts in this task are evident from both academic and industrial laboratories. In this frame, the rising availability of crystal structures of β-secretase-inhibitor complexes represents an invaluable opportunity for optimization. Nevertheless, beyond the inhibitory activity, the major issue of the current research approaches is about problems associated with BBB penetration and pharmacokinetic properties. This review follows the structural evolution of the early β-secretase inhibitors and gives a snap-shot of the hottest chemical templates in the literature of the last five years, showing research progress in this field.

Collaboration


Dive into the Margherita Brindisi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge