Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margie Hunt is active.

Publication


Featured researches published by Margie Hunt.


International Journal of Radiation Oncology Biology Physics | 2002

HIGH-DOSE INTENSITY MODULATED RADIATION THERAPY FOR PROSTATE CANCER: EARLY TOXICITY AND BIOCHEMICAL OUTCOME IN 772 PATIENTS

Michael J. Zelefsky; Zvi Fuks; Margie Hunt; Yoshiya Yamada; Christine Marion; C. Clifton Ling; Howard Amols; Ennapadam Venkatraman; Steven A. Leibel

Purpose To report the acute and late toxicity and preliminary biochemical outcomes in 772 patients with clinically localized prostate cancer treated with high-dose intensity-modulated radiotherapy (IMRT). Methods and materials Between April 1996 and January 2001, 772 patients with clinically localized prostate cancer were treated with IMRT. Treatment was planned using an inverse-planning approach, and the desired beam intensity profiles were delivered by dynamic multileaf collimation. A total of 698 patients (90%) were treated to 81.0 Gy, and 74 patients (10%) were treated to 86.4 Gy. Acute and late toxicities were scored by the Radiation Therapy Oncology Group morbidity grading scales. PSA relapse was defined according to The American Society of Therapeutic Radiation Oncology Consensus Statement. The median follow-up time was 24 months (range: 6-60 months). Results Thirty-five patients (4.5%) developed acute Grade 2 rectal toxicity, and no patient experienced acute Grade 3 or higher rectal symptoms. Two hundred seventeen patients (28%) developed acute Grade 2 urinary symptoms, and one experienced urinary retention (Grade 3). Eleven patients (1.5%) developed late Grade 2 rectal bleeding. Four patients (0.1%) experienced Grade 3 rectal toxicity requiring either one or more transfusions or a laser cauterization procedure. No Grade 4 rectal complications have been observed. The 3-year actuarial likelihood of >/= late Grade 2 rectal toxicity was 4%. Seventy-two patients (9%) experienced late Grade 2 urinary toxicity, and five (0.5%) developed Grade 3 urinary toxicity (urethral stricture). The 3-year actuarial likelihood of >/= late Grade 2 urinary toxicity was 15%. The 3-year actuarial PSA relapse-free survival rates for favorable, intermediate, and unfavorable risk group patients were 92%, 86%, and 81%, respectively. Conclusions These data demonstrate the feasibility of high-dose IMRT in a large number of patients. Acute and late rectal toxicities seem to be significantly reduced compared with what has been observed with conventional three-dimensional conformal radiotherapy techniques. Short-term PSA control rates seem to be at least comparable to those achieved with three-dimensional conformal radiotherapy at similar dose levels. Based on this favorable risk:benefit ratio, IMRT has become the standard mode of conformal treatment delivery for localized prostate cancer at our institution.


The Journal of Urology | 2001

High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer

Michael J. Zelefsky; Zvi Fuks; Margie Hunt; Henry J. Lee; Danna Lombardi; C.C. Ling; Victor E. Reuter; Ennapadam Venkatraman; Steven A. Leibel

PURPOSE We present the long-term outcome and tolerance of 3-dimensional (D) conformal and intensity modulated radiation therapy for localized prostate cancer. MATERIALS AND METHODS Between October 1988 and December 1998, 1,100 patients with clinical stages T1c-T3 prostate cancer were treated with 3-D conformal or intensity modulated radiation therapy. Patients were categorized into prognostic risk groups based on pretreatment prostate specific antigen (PSA), Gleason score and clinical stage. Sextant biopsies were performed 2.5 years or greater after treatment to assess local control. PSA relapse was defined according to the consensus guidelines of the American Society for Therapeutic Radiation Oncology. Late toxicity was classified according to the Radiation Therapy Oncology Group morbidity grading scale. Median followup was 60 months. RESULTS At 5 years the PSA relapse-free survival rate in patients at favorable, intermediate and unfavorable risk was 85% (95% confidence interval [CI] +/- 4), 58% (95% CI +/- 6) and 38% (95% CI +/- 6), respectively (p <0.001). Radiation dose was the most powerful variable impacting PSA relapse-free survival in each prognostic risk group. The 5-year actuarial PSA relapse-free survival rate for patients at favorable risk who received 64.8 to 70.2 Gy. was 77% (95% CI +/- 8) compared to 90% (95% CI +/- 8) for those treated with 75.6 to 86.4 Gy. (p = 0.04) [corrected]. The corresponding rates were 50% (95% CI +/- 8) versus 70% (95% CI +/- 6) in intermediate risk cases (p = 0.001), and 21% (95% CI +/- 8) versus 47% (95% CI +/- 6) in unfavorable risk cases (p = 0.008) [corrected]. Only 4 of 41 patients (10%) who received 81 Gy. had a positive biopsy 2.5 years or greater after treatment compared with 27 of 119 (23%) after 75.6, 23 of 68 (34%) after 70.2 and 13 of 24 (54%) after 64.8 Gy. The incidence of toxicity after 3-D conformal radiation therapy was dose dependent. The 5-year actuarial rate of grade 2 rectal toxicity in patients who received 75.6 Gy. or greater was 14% (95% CI +/- 2) compared with 5% (95% CI +/- 2) in those treated at lower dose levels (p <0.001). Treatment with intensity modulated radiation therapy significantly decreased the incidence of late grade 2 rectal toxicity since the 3-year actuarial incidence in 189 cases managed by 81 Gy. was 2% (95% CI +/- 2) compared with 14% (95% CI +/- 2) in 61 managed by the same dose of 3-D conformal radiation therapy (p = 0.005). The 5-year actuarial rate of grade 2 urinary toxicity in patients who received 75.6 Gy. or greater 3-D conformal radiation therapy was 13% compared with 4% in those treated up to lower doses (p <0.001). Intensity modulated radiation therapy did not affect the incidence of urinary toxicity. CONCLUSIONS Sophisticated conformal radiotherapy techniques with high dose 3-D conformal and intensity modulated radiation therapy improve the biochemical outcome in patients with favorable, intermediate and unfavorable risk prostate cancer. Intensity modulated radiation therapy is associated with minimal rectal and bladder toxicity, and, hence, represents the treatment delivery approach with the most favorable risk-to-benefit ratio.


Medical Physics | 1998

American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning

Benedick A. Fraass; Karen P. Doppke; Margie Hunt; Gerald J. Kutcher; George Starkschall; Robin L. Stern; Jake Van Dyke

In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics.


International Journal of Radiation Oncology Biology Physics | 2008

INCIDENCE OF LATE RECTAL AND URINARY TOXICITIES AFTER THREE- DIMENSIONAL CONFORMAL RADIOTHERAPY AND INTENSITY-MODULATED RADIOTHERAPY FOR LOCALIZED PROSTATE CANCER

Michael J. Zelefsky; Emily J. Levin; Margie Hunt; Yoshiya Yamada; Alison M. Shippy; Andrew Jackson; Howard Amols

PURPOSE To report the incidence and predictors of treatment-related toxicity at 10 years after three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for localized prostate cancer. METHODS AND MATERIALS Between 1988 and 2000, 1571 patients with stages T1-T3 prostate cancer were treated with 3D-CRT/IMRT with doses ranging from 66 to 81 Gy. The median follow-up was 10 years. Posttreatment toxicities were all graded according to the National Cancer Institutes Common Terminology Criteria for Adverse Events. RESULTS The actuarial likelihood at 10 years for the development of Grade>or=2 GI toxicities was 9%. The use of IMRT significantly reduced the risk of gastrointestinal (GI) toxicities compared with patients treated with conventional 3D-CRT (13% to 5%; p<0.001). Among patients who experienced acute symptoms the 10-year incidence of late toxicity was 42%, compared with 9% for those who did not experience acute symptoms (p<0.0001). The 10-year incidence of late Grade>or=2 genitourinary (GU) toxicity was 15%. Patients treated with 81 Gy (IMRT) had a 20% incidence of GU symptoms at 10 years, compared with a 12% for patient treated to lower doses (p=0.01). Among patients who had developed acute symptoms during treatment, the incidence of late toxicity at 10 years was 35%, compared with 12% (p<0.001). The incidence of Grade 3 GI and GU toxicities was 1% and 3%, respectively. CONCLUSIONS Serious late toxicity was unusual despite the delivery of high radiation dose levels in these patients. Higher doses were associated with increased GI and GU Grade 2 toxicities, but the risk of proctitis was significantly reduced with IMRT. Acute symptoms were a precursor of late toxicities in these patients.


Radiotherapy and Oncology | 2000

Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer

Michael J. Zelefsky; Zvi Fuks; Laura Happersett; Henry J. Lee; C. Clifton Ling; C Burman; Margie Hunt; Theresa Wolfe; Ennapadam Venkatraman; Andrew Jackson; Mark W Skwarchuk; Steven A. Leibel

PURPOSE To compare acute and late toxicities of high-dose radiation for prostate cancer delivered by either conventional three-dimensional conformal radiation therapy (3D-CRT) or intensity modulated radiation therapy (IMRT). MATERIALS AND METHODS Between September 1992 and February 1998, 61 patients with clinical stage T1c- T3 prostate cancer were treated with 3D-CRT and 171 with IMRT to a prescribed dose of 81 Gy. To quantitatively evaluate the differences between conventional 3D-CRT and IMRT, 20 randomly selected patients were planned concomitantly by both techniques and the resulting treatment plans were compared. Acute and late radiation-induced morbidity was evaluated in all patients and graded according to the Radiation Therapy Oncology Group toxicity scale. RESULTS Compared with conventional 3D-CRT, IMRT improved the coverage of the clinical target volume (CTV) by the prescription dose and reduced the volumes of the rectal and bladder walls carried to high dose levels (P<0.01), indicating improved conformality with IMRT. Acute and late urinary toxicities were not significantly different for the two methods. However, the combined rates of acute grade 1 and 2 rectal toxicities and the risk of late grade 2 rectal bleeding were significantly lower in the IMRT patients. The 2-year actuarial risk of grade 2 bleeding was 2% for IMRT and 10% for conventional 3D-CRT (P<0.001). CONCLUSIONS The data demonstrate the feasibility and safety of high-dose IMRT for patients with localized prostate cancer and provide a proof-of-principle that this method improves dose conformality relative to tumor coverage and exposure to normal tissues.


International Journal of Radiation Oncology Biology Physics | 2000

The deep inspiration breath-hold technique in the treatment of inoperable non–small-cell lung cancer☆

Kenneth E. Rosenzweig; Joseph Hanley; Dennis Mah; Gig S. Mageras; Margie Hunt; Sean Toner; C Burman; C.C. Ling; Borys Mychalczak; Zvi Fuks; Steven A. Leibel

PURPOSE Conventional radiotherapeutic techniques are associated with lung toxicity that limits the treatment dose. Motion of the tumor during treatment requires the use of large safety margins that affect the feasibility of treatment. To address the control of tumor motion and decrease the volume of normal lung irradiated, we investigated the use of three-dimensional conformal radiation therapy (3D-CRT) in conjunction with the deep inspiration breath-hold (DIBH) technique. METHODS AND MATERIALS In the DIBH technique, the patient is initially maintained at quiet tidal breathing, followed by a deep inspiration, a deep expiration, a second deep inspiration, and breath-hold. At this point the patient is at approximately 100% vital capacity, and simulation, verification, and treatment take place during this phase of breath-holding. RESULTS Seven patients have received a total of 164 treatment sessions and have tolerated the technique well. The estimated normal tissue complication probabilities decreased in all patients at their prescribed dose when compared to free breathing. The dose to which patients could be treated with DIBH increased on average from 69.4 Gy to 87.9 Gy, without increasing the risk of toxicity. CONCLUSIONS The DIBH technique provides an advantage to conventional free-breathing treatment by decreasing lung density, reducing normal safety margins, and enabling more accurate treatment. These improvements contribute to the effective exclusion of normal lung tissue from the high-dose region and permit the use of higher treatment doses without increased risks of toxicity.


International Journal of Radiation Oncology Biology Physics | 2001

Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer

Margie Hunt; Michael J. Zelefsky; Suzanne L. Wolden; Chen-Shou Chui; Thomas LoSasso; Kenneth E. Rosenzweig; Lanceford M. Chong; Spiridon V. Spirou; Lisa Fromme; Moira Lumley; Howard A Amols; C.C. Ling; Steven A. Leibel

PURPOSE To implement intensity-modulated radiation therapy (IMRT) for primary nasopharynx cancer and to compare this technique with conventional treatment methods. METHODS AND MATERIALS Between May 1998 and June 2000, 23 patients with primary nasopharynx cancer were treated with IMRT delivered with dynamic multileaf collimation. Treatments were designed using an inverse planning algorithm, which accepts dose and dose-volume constraints for targets and normal structures. The IMRT plan was compared with a traditional plan consisting of phased lateral fields and a three-dimensional (3D) plan consisting of a combination of lateral fields and a 3D conformal plan. RESULTS Mean planning target volume (PTV) dose increased from 67.9 Gy with the traditional plan, to 74.6 Gy and 77.3 Gy with the 3D and IMRT plans, respectively. PTV coverage improved in the parapharyngeal region, the skull base, and the medial aspects of the nodal volumes using IMRT and doses to all normal structures decreased compared to the other treatment approaches. Average maximum cord dose decreased from 49 Gy with the traditional plan, to 44 Gy with the 3D plan and 34.5 Gy with IMRT. With the IMRT plan, the volume of mandible and temporal lobes receiving more than 60 Gy decreased by 10-15% compared to the traditional and 3D plans. The mean parotid gland dose decreased with IMRT, although it was not low enough to preserve salivary function. CONCLUSION Lower normal tissue doses and improved target coverage, primarily in the retropharynx, skull base, and nodal regions, were achieved using IMRT. IMRT could potentially improve locoregional control and toxicity at current dose levels or facilitate dose escalation to further enhance locoregional control.


International Journal of Radiation Oncology Biology Physics | 2008

Long-Term Results of Conformal Radiotherapy for Prostate Cancer: Impact of Dose Escalation on Biochemical Tumor Control and Distant Metastases-Free Survival Outcomes

Michael J. Zelefsky; Yoshiya Yamada; Zvi Fuks; Zhigang Zhang; Margie Hunt; Oren Cahlon; J. Park; Alison M. Shippy

PURPOSE To report prostate-specific antigen (PSA) relapse-free survival and distant metastases-free survival (DMFS) outcomes for patients with clinically localized prostate cancer treated with high-dose conformal radiotherapy. METHODS AND MATERIALS Between 1988 and 2004, a total of 2,047 patients with clinically localized prostate cancer were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Prescribed dose levels ranged from 66-86.4 Gy. Median follow-up was 6.6 years (range, 3-18 years). RESULTS Although no differences were noted among low-risk patients for the various dose groups, significant improvements were observed with higher doses for patients with intermediate- and high-risk features. In patients with intermediate-risk features, multivariate analysis showed that radiation dose was an important predictor for improved PSA relapse-free survival (p < 0.0001) and improved DMFS (p = 0.04). In patients with high-risk features, multivariate analysis showed that the following variables predict for improved PSA relapse-free survival: dose (p < 0.0001); age (p = 0.0005), and neoadjuvant-concurrent androgen deprivation therapy (ADT; p = 0.01). In this risk group, only higher radiation dose was an important predictor for improved DMFS (p = 0.04). CONCLUSIONS High radiation dose levels were associated with improved biochemical tumor control and decreased risk of distant metastases. For high-risk patients, despite the delivery of high radiation dose levels, the use of ADT conferred an additional benefit for improved tumor control outcomes. We observed a benefit for ADT in high-risk patients who received higher doses.


International Journal of Radiation Oncology Biology Physics | 1997

Intensity-modulated tangential beam irradiation of the intact breast

Linda Hong; Margie Hunt; C Chui; Spiridon V. Spirou; K Forster; Henry J. Lee; Joachim Yahalom; G.J. Kutcher; B. McCormick

PURPOSE To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. METHODS AND MATERIALS Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. RESULTS Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. CONCLUSION Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be achieved, particularly in the superior and inferior regions of the breast. It remains to be seen whether the dosimetric improvements achievable with IMRT will lead to significant clinical outcome improvements.


International Journal of Radiation Oncology Biology Physics | 2008

Ultra-High Dose (86.4 Gy) IMRT for Localized Prostate Cancer: Toxicity and Biochemical Outcomes

Oren Cahlon; Michael J. Zelefsky; Alison M. Shippy; H.M. Chan; Zvi Fuks; Yoshiya Yamada; Margie Hunt; Steven Greenstein; Howard Amols

PURPOSE To report toxicity and preliminary biochemical outcomes with high-dose intensity-modulated radiation therapy (IMRT) to a dose of 86.4 Gy for localized prostate cancer. METHODS AND MATERIALS Between August 1997 and March 2004, 478 patients were treated with 86.4 Gy using a 5- to 7-field IMRT technique. To adhere to normal tissue constraints, the mean D95 and V100 for the planning target volume were 83 Gy and 87%, respectively. Toxicity data were scored according to the Common Terminology Criteria for Adverse Events Version 3.0. Freedom from biochemical relapse was calculated. The median follow-up was 53 months. RESULTS Thirty-seven patients (8%) experienced acute Grade 2 gastrointestinal (GI) toxicity. There was no acute Grade 3 or 4 GI toxicity. One hundred and five patients (22%) experienced acute Grade 2 genitourinary (GU) toxicity and three patients (0.6%) had Grade 3 GU toxicity. There was no acute Grade 4 GU toxicity. Sixteen patients (3%) developed late Grade 2 GI toxicity and two patients (<1%) developed late Grade 3 GI toxicity. Sixty patients (13%) had late Grade 2 GU toxicity and 12 (<3%) experienced late Grade 3 GU toxicity. The 5-year actuarial PSA relapse-free survival according to the nadir plus 2 ng/mL definition was 98%, 85% and 70% for the low, intermediate, and high risk NCCN prognostic groups. CONCLUSION This report represents the largest data set of patients treated to ultra-high radiation dose levels of 86.4 Gy using IMRT for localized prostate cancer. Our findings indicate that this treatment is well tolerated and the early excellent biochemical control rates are encouraging.

Collaboration


Dive into the Margie Hunt's collaboration.

Top Co-Authors

Avatar

Michael J. Zelefsky

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yoshiya Yamada

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Howard Amols

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Laura Happersett

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joseph O. Deasy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

G Mageras

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Steven A. Leibel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zvi Fuks

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Jackson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ellen Yorke

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge