Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margit M. Janát-Amsbury is active.

Publication


Featured researches published by Margit M. Janát-Amsbury.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

Geometry and Surface Characteristics of Gold Nanoparticles Influence their Biodistribution and Uptake by Macrophages

Arnida; Margit M. Janát-Amsbury; Abhijit Ray; C. M. Peterson; Hamidreza Ghandehari

Spherical and rod-shaped gold nanoparticles with surface poly(ethylene glycol) (PEG) chains were characterized for size, shape, charge, poly dispersity and surface plasmon resonance. The nanoparticles were injected intravenously to 6-8-week-old female nu/nu mice bearing orthotopic ovarian tumors, and their biodistribution in vital organs was compared. Gold nanorods were taken up to a lesser extent by the liver, had longer circulation time in the blood, and higher accumulation in the tumors, compared with their spherical counterparts. The cellular uptake of PEGylated gold nanoparticles by a murine macrophage-like cell line as a function of geometry was examined. Compared to nanospheres, PEGylated gold nanorods were taken up to a lesser extent by macrophages. These studies point to the importance of gold nanoparticle geometry and surface properties on transport across biological barriers.


Journal of Controlled Release | 2013

Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel

Rui Zhang; Kui Luo; Jiyuan Yang; Monika Sima; Yongen Sun; Margit M. Janát-Amsbury; Jindřich Kopeček

The performance and safety of current antineoplastic agents, particularly water-insoluble drugs, are still far from satisfactory. For example, the currently widely used Cremophor EL®-based paclitaxel (PTX) formulation exhibits pharmacokinetic concerns and severe side effects. Thus, the concept of a biodegradable polymeric drug-delivery system, which can significantly improve therapeutic efficacy and reduce side effects is advocated. The present work aims to develop a new-generation of long-circulating, biodegradable carriers for effective delivery of PTX. First, a multiblock backbone biodegradable N-(2-hydroxypropyl)methacrylamide(HPMA) copolymer-PTX conjugate (mP-PTX) with molecular weight (Mw) of 335 kDa was synthesized by RAFT (reversible addition-fragmentation chain transfer) copolymerization, followed by chain extension. In vitro studies on human ovarian carcinoma A2780 cells were carried out to investigate the cytotoxicity of free PTX, HPMA copolymer-PTX conjugate with Mw of 48 kDa (P-PTX), and mP-PTX. The experiments demonstrated that mP-PTX has a similar cytotoxic effect against A2780 cells as free PTX and P-PTX. To further compare the behavior of this new biodegradable conjugate (mP-PTX) with free PTX and P-PTX in vivo evaluation was performed using female nu/nu mice bearing orthotopic A2780 ovarian tumors. Pharmacokinetics study showed that high Mw mP-PTX was cleared more slowly from the blood than commercial PTX formulation and low Mw P-PTX. SPECT/CT imaging and biodistribution studies demonstrated biodegradability as well as elimination of mP-PTX from the body. The tumors in the mP-PTX treated group grew more slowly than those treated with saline, free PTX, and P-PTX (single dose at 20 mg PTX/kg equivalent). Moreover, mice treated with mP-PTX had no obvious ascites and body-weight loss. Histological analysis indicated that mP-PTX had no toxicity in liver and spleen, but induced massive cell death in the tumor. In summary, this biodegradable drug delivery system has a great potential to improve performance and safety of current antineoplastic agents.


Biomacromolecules | 2011

COMPARATIVE BIODISTRIBUTION OF PAMAM DENDRIMERS AND HPMA COPOLYMERS IN OVARIAN TUMOR-BEARING MICE

S. Sadekar; Abhijit Ray; Margit M. Janát-Amsbury; C. M. Peterson; Hamidreza Ghandehari

The biodistribution profile of a series of linear N-(2-hydroxylpropyl)methacrylamide (HPMA) copolymers was compared with that of branched poly(amido amine) dendrimers containing surface hydroxyl groups (PAMAM-OH) in orthotopic ovarian-tumor-bearing mice. Below an average molecular weight (MW) of 29 kDa, the HPMA copolymers were smaller than the PAMAM-OH dendrimers of comparable molecular weight. In addition to molecular weight, hydrodynamic size and polymer architecture affected the biodistribution of these constructs. Biodistribution studies were performed by dosing mice with (125)iodine-labeled polymers and collecting all major organ systems, carcass, and excreta at defined time points. Radiolabeled polymers were detected in organ systems by measuring gamma emission of the (125)iodine radiolabel. The hyperbranched PAMAM dendrimer, hydroxyl-terminated, generation 5 (G5.0-OH), was retained in the kidney over 1 week, whereas the linear HPMA copolymer of comparable molecular weight was excreted into the urine and did not show persistent renal accumulation. PAMAM dendrimer, hydroxyl-terminated, generation 6.0 (G6.0-OH), was taken up by the liver to a higher extent, whereas the HPMA copolymer of comparable molecular weight was observed to have a plasma exposure three times that of this dendrimer. Tumor accumulation and plasma exposure were correlated with the hydrodynamic sizes of the polymers. PAMAM dendrimer, hydroxyl-terminated, generation 7.0 (G7.0-OH), showed extended plasma circulation, enhanced tumor accumulation, and prolonged retention with the highest tumor/blood ratio for the polymers under study. Head-to-head comparative study of HPMA copolymers and PAMAM dendrimers can guide the rational design and development of carriers based on these systems for the delivery of bioactive and imaging agents.


Carbohydrate Polymers | 2013

Preparation and characterization of glycol chitin as a new thermogelling polymer for biomedical applications.

Zhengzheng Li; Sungpil Cho; Ick Chan Kwon; Margit M. Janát-Amsbury; Kang Moo Huh

In this study, a new thermo-sensitive polymer, glycol chitin, was synthesized by controlled N-acetylation of glycol chitosan and evaluated as a thermogelling system. The physico-chemical properties of glycol chitins with different degrees of acetylation (DA) were investigated in terms of degradation, cytotoxicity, rheological properties, and in vitro and in vivo gel formation. Aqueous solutions of glycol chitins were flowable freely at room temperature but quickly became a durable gel at body temperature. Thermo-reversible sol-gel transition properties were observed with fast gelation kinetics. Glycol chitins with higher DA showed faster degradation in the presence of lysozyme. They exhibited no significant biological toxicity against human cell lines. An anti-cancer drug, doxorubicin, could be incorporated into the hydrogel by a simple mixing process and released in a sustained pattern over 13 days. Our findings suggest that glycol chitins could be useful as a new thermogelling biomaterial for drug delivery and injectable tissue engineering.


BMC Cancer | 2014

Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma

Emily R. Theisen; Snehal Gajiwala; Jared J. Bearss; Venkataswamy Sorna; Sunil Sharma; Margit M. Janát-Amsbury

BackgroundEndometrial cancer is the most common gynecologic malignancy. Type II endometrial carcinoma is often poorly differentiated and patients diagnosed with Type II disease (~11%) are disproportionately represented in annual endometrial cancer deaths (48%). Recent genomic studies highlight mutations in chromatin regulators as drivers in Type II endometrial carcinoma tumorigenesis, suggesting the use of epigenetic targeted therapies could provide clinical benefit to these patients. We investigated the anti-tumor efficacy of the LSD1 inhibitor HCI2509 in two poorly differentiated Type II endometrial cancer cell lines AN3CA and KLE.MethodsThe effects of HCI2509 on viability, proliferation, anchorage-independent growth, global histone methylation, LSD1 target gene induction, cell cycle, caspase activation and TUNEL were assayed. KLE cells were used in an orthotopic xenograft model to assess the anti-tumor activity of HCI2509.ResultsBoth AN3CA and KLE cells were sensitive to HCI2509 treatment with IC50s near 500 nM for cell viability. Inhibition of LSD1 with HCI2509 caused decreased proliferation and anchorage independent growth in soft agar, elevated global histone methylation, and perturbed the cell cycle in both cell lines. These effects were largely dose-dependent. HCI2509 treatment also caused apoptotic cell death. Orthotopic implantation of KLE cells resulted in slow-growing and diffuse tumors throughout the abdomen. Tumor burden was distributed log-normally. Treatment with HCI2509 resulted 5/9 tumor regressions such that treatment and regressions were significantly associated (p = 0.034).ConclusionsOur findings demonstrate the anti-cancer properties of the LSD1 inhibitor HCI2509 on poorly differentiated endometrial carcinoma cell lines, AN3CA and KLE. HCI2509 showed single-agent efficacy in orthotopic xenograft studies. Continued studies are needed to preclinically validate LSD1 inhibition as a therapeutic strategy for endometrial carcinoma.


Journal of Controlled Release | 2014

Ultrasound-assisted siRNA delivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGF for ovarian cancer treatment.

Stelios Florinas; Jaesung Kim; Kihoon Nam; Margit M. Janát-Amsbury; Sung Wan Kim

The major drawback hampering siRNA therapies from being more widely accepted in clinical practice is its insufficient accumulation at the target site mainly due to poor cellular uptake and rapid degradation in serum. Therefore, we designed a novel polymeric siRNA carrier system, which would withstand serum-containing environments and tested its performance in vitro as well as in vivo. Delivering siRNA with a system combining an arginine-grafted bioreducible polymer (ABP), microbubbles (MBs), and ultrasound technology (US) we were able to synergize the advantages each delivery system owns individually, and created our innovative siRNA-ABP-MB (SAM) complexes. SAM complexes show significantly higher siRNA uptake and VEGF protein knockdown in vitro with serum-containing media when compared to naked siRNA, and 25k-branched-polyethylenimine (bPEI) representing the current standard in nonviral gene therapy. SAM complexes activated by US are also able to improve siRNA uptake in tumor tissue resulting in decelerating tumor growth in vivo.


Cancer Medicine | 2015

An estrogen-induced endometrial hyperplasia mouse model recapitulating human disease progression and genetic aberrations

Chieh Hsiang Yang; Aliyah Almomen; Yin Shen Wee; Elke A. Jarboe; C. Matthew Peterson; Margit M. Janát-Amsbury

Endometrial hyperplasia (EH) is a condition originating from uterine endometrial glands undergoing disordered proliferation including the risk to progress to endometrial adenocarcinoma. In recent years, a steady increase in EH cases among younger women of reproductive age accentuates the demand of therapeutic alternatives, which emphasizes that an improved disease model for therapeutic agents evaluation is concurrently desired. Here, a new hormone‐induced EH mouse model was developed using a subcutaneous estradiol (E2)‐sustained releasing pellet, which elevates the serum E2 level in mice, closely mimicking the effect known as estrogen dominance with underlying, pathological E2 levels in patients. The onset and progression of EH generated within this model recapitulate a clinically relevant, pathological transformation, beginning with disordered proliferation developing to simple EH, advancing to atypical EH, and then progressing to precancerous stages, all following a chronologic manner. Although a general increase in nuclear progesterone receptor (PR) expression occurred after E2 expression, a total loss in PR was noted in some endometrial glands as disease advanced to simple EH. Furthermore, estrogen receptor (ER) expression in the nucleus of endometrial cells was reduced in disordered proliferation and increased when EH progressed to atypical EH and precancerous stages. This EH model also resembles other pathological patterns found in human disease such as leukocytic infiltration, genetic aberrations in β‐catenin, and joint phosphatase and tensin homolog/paired box gene 2 (PTEN/PAX2) silencing. In summary, this new and comprehensively characterized EH model is cost‐effective, easily reproducible, and may serve as a tool for preclinical testing of therapeutic agents and facilitate further investigation of EH.


Advanced Drug Delivery Reviews | 2009

Drug delivery for in vitro fertilization: Rationale, current strategies and challenges

Margit M. Janát-Amsbury; Kavita M. Gupta; Caroline D. Kablitz; C. Matthew Peterson

In vitro fertilization has experienced phenomenal progress in the last thirty years and awaits the additional refinement and enhancement of medication delivery systems. Opportunity exists for the novel delivery of gonadotropins, progesterone and other adjuvants. This review highlights the rationale for various medications, present delivery methods and introduces the status of novel ideas and possibilities.


International Journal of Pharmaceutics | 2013

Mucoadhesive hybrid gel improves intraperitoneal platinum delivery.

Sungpil Cho; Yongen Sun; Elke A. Jarboe; Andrew P. Soisson; Mark K. Dodson; David K. Gaffney; C. Matthew Peterson; Margit M. Janát-Amsbury

A leading cause of death and suffering in patients with abdominal or pelvic malignancies is progression of peritoneal surface disease. Changes in the use of chemotherapy have shown significant survival benefits for intraperitoneal or combined intraperitoneal and intravenous treatment following optimal surgical cytoreduction. However, broader clinical use of intraperitoneal therapy has not reached its full potential due to limited efficacy, accessibility and nonspecific toxicity. To overcome these problems, we developed a mucoadhesive hybrid gel (HG) for a local, intraperitoneal drug delivery. In vivo studies confirmed reliable adherence and residence of the gel to the peritoneal sidewall for at least 72 h exhibiting no signs of tissue toxicity. Functionally active CDDP was released from HG within 2h and was equal to free CDDP in vitro. Moreover, intraperitoneal application of HG-CDDP significantly enhanced CDDP accumulation in the genomic DNA of peritoneal tissues compared to the same CDDP dose administered intravenously. These findings indicate the potential application of this hybrid gel as a mucoadhesive drug carrier amendable to use for intraperitoneal drug delivery and possible expansion for use on other mucosal surfaces of the female reproductive tract.


International Journal of Gynecological Cancer | 2017

Endometrial cancers harboring mutated fibroblast growth factor receptor 2 protein are successfully treated with a new small tyrosine kinase inhibitor in an orthotopic mouse model

Sebastien Taurin; Chieh Hsiang Yang; Maria Reyes; Sungpil Cho; Demetrius M. Coombs; Elke A. Jarboe; Theresa L. Werner; C. Matthew Peterson; Margit M. Janát-Amsbury

Objectives AL3818 (anlotinib) is a receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFR1, VEGFR2/KDR, and VEGFR3), stem cell factor receptor (C-kit), platelet-derived growth factor (PDGFβ), and fibroblast growth factor receptors (FGFR1, FGFR2, and FGFR3). This study evaluates the efficacy of AL3818 studying tumor regression in an orthotopic murine endometrial cancer model. Methods We tested the cytotoxicity of AL3818 on a panel of 7 human endometrial cancer cell lines expressing either wild-type or mutant FGFR2 and also assessed the in vivo antitumor efficacy in a murine, orthotopic AN3CA endometrial cancer model. AL3818 was administered daily per os either alone or in combination with carboplatin and paclitaxel, which represent the current standard of adjuvant care for endometrial cancer. Results AL3818 significantly reduces AN3CA cell number in vitro, characterized by high expression of a mutated FGFR2 protein. Daily oral administration of AL3818 (5 mg/kg) resulted in a complete response in 55% of animals treated and in a reduced tumor volume, as well as decreased tumor weights of AN3CA tumors by 94% and 96%, respectively, following a 29-day treatment cycle. Whereas carboplatin and paclitaxel failed to alter tumor growth, the combination with AL3818 did not seem to exhibit a superior effect when compared with AL3818 treatment alone. Conclusions AL3818 shows superior efficacy for the treatment of endometrial cancer irresponsive to conventional carboplatin and paclitaxel combination and warrants further investigation.

Collaboration


Dive into the Margit M. Janát-Amsbury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungpil Cho

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge