Margit Mutso
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margit Mutso.
Journal of Virology | 2014
David Hallengärd; Maria Kakoulidou; Aleksei Lulla; Beate M. Kümmerer; Daniel X. Johansson; Margit Mutso; Valeria Lulla; John K. Fazakerley; Pierre Roques; Roger Le Grand; Andres Merits; Peter Liljeström
ABSTRACT Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.
Journal of Virology | 2015
Bastian Thaa; Roberta Biasiotto; Kai Eng; Maarit Neuvonen; Benjamin Götte; Lara Rheinemann; Margit Mutso; Age Utt; Finny S. Varghese; Giuseppe Balistreri; Andres Merits; Tero Ahola; Gerald M. McInerney
ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human pathogen, causing high fever and joint pain, while SFV is a low-pathogenic model virus, albeit neuropathogenic in mice. We show that both SFV and CHIKV activate the prosurvival PI3K-Akt-mTOR pathway in cells but greatly differ in their capacities to do so: Akt is strongly and persistently activated by SFV infection but only moderately activated by CHIKV. We mapped this activation capacity to a region in nonstructural protein 3 (nsP3) of SFV and could functionally transfer this region to CHIKV. Akt activation is linked to the subcellular dynamics of replication complexes, which are efficiently internalized from the cell periphery for SFV but not CHIKV. This difference in signal pathway stimulation and replication complex localization may have implications for pathology.
Current Computer - Aided Drug Design | 2012
Mati Karelson; Dimitar A. Dobchev; Gunnar Karelson; Tarmo Tamm; Kaido Tämm; Andrei Nikonov; Margit Mutso; Andres Merits
A novel computational technology based on fragmentation of the chemical compounds has been used for the fast and efficient prediction of activities of prospective protease inhibitors of the hepatitis C virus. This study spans over a discovery cycle from the theoretical prediction of new HCV NS3 protease inhibitors to the first cytotoxicity experimental tests of the best candidates. The measured cytotoxicity of the compounds indicated that at least two candidates would be suitable further development of drugs.
Journal of General Virology | 2017
Margit Mutso; Sirle Saul; Kai Rausalu; Olga Y Susova; Eva Žusinaite; Suresh Mahalingam; Andres Merits
Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain-Barré syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.
PLOS Pathogens | 2018
Michela Mazzon; Cecilia Castro; Bastian Thaa; Lifeng Liu; Margit Mutso; Xiang Liu; Suresh Mahalingam; Julian L. Griffin; Mark Marsh; Gerald M. McInerney
Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.
PLOS ONE | 2015
Margit Mutso; Andrei Nikonov; Arno Pihlak; Eva Žusinaite; Liane Viru; Anastasia Selyutina; Tõnu Reintamm; Merike Kelve; Mart Saarma; Mati Karelson; Andres Merits
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2’-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.
Viruses | 2018
Margit Mutso; Ainhoa Moliner Morro; Cecilia Smedberg; Sergo Kasvandik; Muriel Aquilimeba; Mona Teppor; Liisi Tarve; Aleksei Lulla; Valeria Lulla; Sirle Saul; Bastian Thaa; Gerald M. McInerney; Andres Merits; Margus Varjak
Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.
Journal of General Virology | 2018
Apamas Sukkaew; Montri Thanagith; Tipparat Thongsakulprasert; Margit Mutso; Suresh Mahalingam; Duncan R. Smith; Sukathida Ubol
Low-passage clinical isolates of chikungunya virus (CHIKV) were found to be a mixture of large- and small-plaque viruses, with small-plaque viruses being the predominant species. To investigate the contribution of plaque variants to the pathology of the joint, primary human fibroblast-like synoviocytes (HFLS) were used. Large- and small-plaque viruses were purified from two clinical isolates, CHIKV-031C and CHIKV-033C, and were designated CHIKV-031L and CHIKV-031S and CHIKV-033L and CHIKV-033S, respectively. The replication efficiencies of these viruses in HFLSs were compared and it was found that CHIKV-031S and CHIKV-033S replicated with the highest efficiency, while the parental clinical isolates had the lowest efficiency. Interestingly, the cytopathic effects (CPE) induced by these viruses correlated with neither the efficiency of replication nor the plaque size. The small-plaque viruses and the clinical isolates induced cell death rapidly, while large-plaque viruses induced slow CPE in which only 50 % of the cells in infected cultures were rounded up and detached on day 5 of infection. The production of proinflammatory cytokines and chemokines from infected HFLSs was evaluated. The results showed that the large-plaque viruses and the clinical isolates, but not small-plaque variants, were potent inducers of IL-6, IL-8 and MCP-1, and were able to migrate monocytes/macrophages efficiently. Sequencing data revealed a number of differences in amino acid sequences between the small- and large-plaque viruses. The results suggest that it is common for clinical isolates of CHIKV to be heterogeneous, while the variants may have distinct roles in the pathology of the joint.
Archive | 2017
Lara J. Herrero; Ali Zaid; Margit Mutso; Suresh Mahalingam
The expansion of mosquito-borne viral (arboviral) arthritis poses a significant threat to human health worldwide. Clinical reports show that arboviral arthritis can be persistent and debilitating, with evidence of bone pathology. As part of the Togaviridae family, alphaviruses are mosquito-borne viruses that are widely distributed throughout the globe causing extensive morbidity and mortality. Despite this, very little is known about the pathogenesis of disease caused by alphaviruses. It has been shown that macrophages play a crucial role in the development of alphaviral arthritis. Infection causes macrophage activation and the release of macrophage inhibitory factor (MIF), which subsequently plays a pivotal role in alphavirus-induced arthritis by regulating the expression of pro-inflammatory factors. This chapter discusses the role of the MIF-CD74 axis in the development of alphavirus arthritis and the therapeutic potential of antagonists in the treatment of alphaviral arthropathies.
Journal of Virology | 2016
Bastian Thaa; Roberta Biasiotto; Kai Eng; Maarit Neuvonen; Benjamin Götte; Lara Rheinemann; Margit Mutso; Age Utt; Finny S. Varghese; Giuseppe Balistreri; Andres Merits; Tero Ahola; Gerald M. McInerney
Bastian Thaa, Roberta Biasiotto, Kai Eng, Maarit Neuvonen, Benjamin Götte, Lara Rheinemann, Margit Mutso, Age Utt, Finny Varghese, Giuseppe Balistreri, Andres Merits, Tero Ahola, Gerald M. McInerney Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden; University of Helsinki, Institute of Biotechnology, Helsinki, Finland; University of Tartu, Institute of Technology, Tartu, Estonia; University of Helsinki, Department of Food and Environmental Sciences, Helsinki, Finland