Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margit Pál is active.

Publication


Featured researches published by Margit Pál.


Development | 2008

APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle

Karine Narbonne-Reveau; Stefania Senger; Margit Pál; Anabel Herr; Helena E. Richardson; Maki Asano; Péter Deák; Mary A. Lilly

The endocycle is a commonly observed variant cell cycle in which cells undergo repeated rounds of DNA replication with no intervening mitosis. How the cell cycle machinery is modified to transform a mitotic cycle into endocycle has long been a matter of interest. In both plants and animals, the transition from the mitotic cycle to the endocycle requires Fzr/Cdh1, a positive regulator of the Anaphase-Promoting Complex/Cyclosome (APC/C). However, because many of its targets are transcriptionally downregulated upon entry into the endocycle, it remains unclear whether the APC/C functions beyond the mitotic/endocycle boundary. Here, we report that APC/CFzr/Cdh1 activity is required to promote the G/S oscillation of the Drosophila endocycle. We demonstrate that compromising APC/C activity, after cells have entered the endocycle, inhibits DNA replication and results in the accumulation of multiple APC/C targets, including the mitotic cyclins and Geminin. Notably, our data suggest that the activity of APC/CFzr/Cdh1 during the endocycle is not continuous but is cyclic, as demonstrated by the APC/C-dependent oscillation of the pre-replication complex component Orc1. Taken together, our data suggest a model in which the cyclic activity of APC/CFzr/Cdh1 during the Drosophila endocycle is driven by the periodic inhibition of Fzr/Cdh1 by Cyclin E/Cdk2. We propose that, as is observed in mitotic cycles, during endocycles, APC/CFzr/Cdh1 functions to reduce the levels of the mitotic cyclins and Geminin in order to facilitate the relicensing of DNA replication origins and cell cycle progression.


Journal of Cell Science | 2009

Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster

Zoltán Lipinszki; P. Kiss; Margit Pál; Péter Deák; Áron Szabó; Éva Hunyadi-Gulyás; Éva Klement; Katalin F. Medzihradszky; Andor Udvardy

Recognition of polyubiquitylated substrates by the proteasome is a highly regulated process that requires polyubiquitin receptors. We show here that the concentrations of the proteasomal and extraproteasomal polyubiquitin receptors change in a developmentally regulated fashion. The stoichiometry of the proteasomal p54/Rpn10 polyubiquitin receptor subunit, relative to that of other regulatory particle (RP) subunits falls suddenly at the end of embryogenesis, remains low throughout the larval stages, starts to increase again in the late third instar larvae and remains high in the pupae, adults and embryos. A similar developmentally regulated fluctuation was observed in the concentrations of the Rad23 and Dsk2 extraproteasomal polyubiquitin receptors. Depletion of the polyubiquitin receptors at the end of embryogenesis is due to the emergence of a developmentally regulated selective proteolytic activity. To follow the fate of subunit p54/Rpn10 in vivo, transgenic Drosophila melanogaster lines encoding the N-terminal half (NTH), the C-terminal half (CTH) or the full-length p54/Rpn10 subunit were established in the inducible Gal4-UAS system. The daughterless-Gal4-driven whole-body expression of the full-length subunit or its NTH did not produce any detectable phenotypic changes, and the transgenic products were incorporated into the 26S proteasome. The transgene-encoded CTH was not incorporated into the 26S proteasome, caused third instar larval lethality and was found to be multi-ubiquitylated. This modification, however, did not appear to be a degradation signal because the half-life of the CTH was over 48 hours. Accumulation of the CTH disturbed the developmentally regulated changes in subunit composition of the RP and the emergence of the selective proteolytic activity responsible for the depletion of the polyubiquitin receptors. Build-up of subunit p54/Rpn10 in the RP had already started in 84-hour-old larvae and reached the full complement characteristic of the non-larval developmental stages at the middle of the third instar larval stage, just before these larvae perished. Similar shifts were observed in the concentrations of the Rad23 and Dsk2 polyubiquitin receptors. The postsynthetic modification of CTH might be essential for this developmental regulation, or it might regulate an essential extraproteasomal function(s) of subunit p54/Rpn10 that is disturbed by the expression of an excess of CTH.


Journal of Cell Science | 2007

Structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex in Drosophila melanogaster

Margit Pál; Olga Nagy; Dalma Ménesi; Andor Udvardy; Péter Deák

The anaphase-promoting complex/cyclosome or APC/C is a key regulator of chromosome segregation and mitotic exit in eukaryotes. It contains at least 11 subunits, most of which are evolutionarily conserved. The most abundant constituents of the vertebrate APC/C are the four structurally related tetratrico-peptide repeat (TPR) subunits, the functions of which are not yet precisely understood. Orthologues of three of the TPR subunits have been identified in Drosophila. We have shown previously that one of the TPR subunits of the Drosophila APC/C, Apc3 (also known as Cdc27 or Mákos), is essential for development, and perturbation of its function results in mitotic cyclin accumulation and metaphase-like arrest. In this study we demonstrate that the Drosophila APC/C associates with a new TPR protein, a genuine orthologue of the vertebrate Apc7 subunit that is not found in yeasts. In addition to this, transgenic flies knocked down for three of the TPR genes Apc6 (Cdc16), Apc7 and Apc8 (Cdc23), by RNA interference were established to investigate their function. Whole-body expression of subunit-specific dsRNA efficiently silences these genes resulting in only residual mRNA concentrations. Apc6/Cdc16 and Apc8/Cdc23 silencing induces developmental delay and causes different pupal lethality. Cytological examination showed that these animals had an elevated level of apoptosis, high mitotic index and delayed or blocked mitosis in a prometaphase-metaphase-like state with overcondensed chromosomes. The arrested neuroblasts contained elevated levels of cyclin B but, surprisingly, cyclin A appeared to be degraded normally. Contrary to the situation for the Apc6/Cdc16 and Apc8/Cdc23 genes, the apparent loss of Apc7 function does not lead to the above abnormalities. Instead, the Apc7 knocked down animals and null mutants are viable and fertile, although they display mild chromosome segregation defects and anaphase delay. Nevertheless, the Apc7 subunit shows synergistic genetic interaction with Apc8/Cdc23 that, together with the phenotypic data, assumes a limited functional role for Apc7. Taken together, these data suggest that the structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex.


FEBS Journal | 2011

Overexpression of Dsk2/dUbqln results in severe developmental defects and lethality in Drosophila melanogaster that can be rescued by overexpression of the p54/Rpn10/S5a proteasomal subunit

Zoltán Lipinszki; Margit Pál; Olga Nagy; Péter Deák; Éva Hunyadi-Gulyás; Andor Udvardy

Polyubiquitin receptors execute the targeting of polyubiquitylated proteins to the 26S proteasome. In vitro studies indicate that disturbance of the physiological balance among different receptor proteins impairs the proteasomal degradation of polyubiquitylated proteins. To study the physiological consequences of shifting the in vivo equilibrium between the p54/Rpn10 proteasomal and the Dsk2/dUbqln extraproteasomal polyubiquitin receptors, transgenic Drosophila lines were constructed in which the overexpression or RNA interference‐mediated silencing of these receptors can be induced. Flies overexpressing Flag–p54 were viable and fertile, without any detectable morphological abnormalities, although detectable accumulation of polyubiquitylated proteins demonstrated a certain level of proteolytic disturbance. Flag–p54 was assembled into the 26S proteasome and could fully complement the lethal phenotype of a p54 null mutant Drosophila line. The overexpression of Dsk2 caused severe morphological abnormalities in the late pupal stages, leading to pharate adult lethality, accompanied by a huge accumulation of highly polyubiquitylated proteins. The lethal phenotype of Dsk2 overexpression could be rescued in a double transgenic line coexpressing Flag–Dsk2 and Flag–p54. Although the double transgenic line was viable and fertile, it did not restore the proteolytic defects; the accumulation of the highly polyubiquitylated proteins was even more severe in the double transgenic line. Significant differences were found in the Dsk2–26S proteasome interaction in Drosophila melanogaster as compared with Saccharomyces cerevisiae. In yeast, Dsk2 can interact only with ΔRpn10 proteasomes and not with the wild‐type one. In Drosophila, Dsk2 does not interact with Δp54 proteasomes, but the interaction can be fully restored by complementing the Δp54 deletion with Flag–p54.


Acta Biologica Hungarica | 2007

Characterization of the APC10/DOC1 subunit of the anaphase promoting complex in Drosophila melanogaster

Margit Pál; Kata Varga; Olga Nagy; Péter Deák

The anaphase promoting complex or cyclosome (APC/C) is a large protein complex with an ubiquitin ligase activity which specifically targets mitotic regulatory proteins for proteasomal degradation. The APC/C contains at least 11 subunits, most of which are evolutionarily conserved from yeasts to humans. We have isolated and characterized mutant alleles of the gene that codes for the APC10/Doc1 subunit of the Drosophila APC/C. Loss of function APC10/Doc1 mutants have rudimentary imaginal discs and arrest their development as prepupae. Larval neuroblasts from these mutants show gross mitotic defects including high mitotic index, chromosome overcondensation, metaphase-like arrest and frequent aneuploid and polyploid cells. Mitotically arrested cells accumulate one of the main substrates of APC/C, cyclin B, most likely due to disabled ubiquitination activity. Our results suggest that the Apc10/Doc1 subunit has an essential role in establishing E3 ubiquitin ligase activity of APC/C in Drosophila.


PLOS ONE | 2015

Role of the deubiquitylating enzyme DmUsp5 in coupling ubiquitin equilibrium to development and apoptosis in Drosophila melanogaster.

Levente Kovács; Olga Nagy; Margit Pál; Andor Udvardy; Octavian Popescu; Péter Deák

Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.


Biochemical Journal | 2013

A novel interplay between the ubiquitin-proteasome system and serine proteases during Drosophila development

Zoltán Lipinszki; Éva Klement; Éva Hunyadi-Gulyás; Katalin F. Medzihradszky; Robert Markus; Margit Pál; Péter Deák; Andor Udvardy

The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.


BMC Developmental Biology | 2012

CalpB modulates border cell migration in Drosophila egg chambers

Endre Kókai; Ferencz Sándor Páldy; Kálmán Somogyi; Anil Chougule; Margit Pál; Éva Kerekes; Péter Deák; Peter Friedrich; Viktor Dombrádi; Géza Ádám

BackgroundCalpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility.ResultsWe demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if), β-PS integrin ( mys) and talin ( rhea) are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts.ConclusionsThe physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration.


Pathology & Oncology Research | 2017

The Expression of Checkpoint and DNA Repair Genes in Head and Neck Cancer as Possible Predictive Factors

Orsolya Rusz; Margit Pál; Éva Szilágyi; László Rovó; Z. Varga; Bernadett Tomisa; Gabriella Fábián; Levente Kovács; Olga Nagy; Petra Mozes; Zita Reisz; László Tiszlavicz; Péter Deák; Zsuzsanna Kahán

DNA damage response failure may influence the efficacy of DNA-damaging treatments. We determined the expression of 16 genes involved in distinct DNA damage response pathways, in association with the response to standard therapy. Twenty patients with locoregionally advanced, squamous cell head and neck carcinoma were enrolled. The treatment included induction chemotherapy (iChT) with docetaxel, cisplatin and 5-fluorouracil followed by concomitant chemoradiotherapy (ChRT) or radiotherapy (RT) alone. The volumetric metabolic therapeutic response was determined by [18F]FDG-PET/CT. In the tumor and matched normal tissues collected before treatment, the gene expressions were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). The down-regulation of TP53 was apparently associated with a poor response to iChT, its up-regulation with complete regression in 2 cases. 7 cases with down-regulated REV1 expression showed complete regression after ChRT/RT, while 1 case with REV1 overexpression was resistant to RT. The overexpression of WRN was an independent predictor of tumor relapse. Our results suggest that an altered expression of REV1 predicts sensitivity to RT, while WRN overexpression is an unfavorable prognostic factor.


Biochemical Journal | 2005

Zn2+-induced reversible dissociation of subunit Rpn10/p54 of the Drosophila 26 S proteasome.

P. Kiss; Áron Szabó; Éva Hunyadi-Gulyás; Katalin F. Medzihradszky; Zoltán Lipinszki; Margit Pál; Andor Udvardy

Collaboration


Dive into the Margit Pál's collaboration.

Top Co-Authors

Avatar

Péter Deák

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andor Udvardy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Olga Nagy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zoltán Lipinszki

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Éva Hunyadi-Gulyás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Áron Szabó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Klement

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge