Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margo T Greenfield is active.

Publication


Featured researches published by Margo T Greenfield.


Journal of Physical Chemistry A | 2009

Control of cis-stilbene photochemistry using shaped ultraviolet pulses.

Margo T Greenfield; Shawn McGrane; David Moore

We demonstrate product branching control of the photoisomerization and cyclization reactions of cis-stilbene dissolved in n-hexane. An acousto-optical modulator-based pulse shaper was used at 266 nm, in a shaped pump-supercontinuum probe technique, to enhance and suppress the relative yields of the cis- to trans-stilbene isomerization as well as the cis-stilbene to 4a,4b-dihydrophenanthrene cyclization. Global, local, and single variable optimization control schemes were all successful at controlling stilbenes excited-state intramolecular rearrangements. The presence of multiphoton transitions was determined to be crucial in changing the yield under the experimental conditions employed. We have mapped experimental conditions in which multiphoton absorption was successful in controlling photoproduct branching ratios in stilbene, illustrated that the intensity dependence of the product yields can provide details of reactive channel branching ratios of higher excited-states, and shown that under the experimental conditions employed (150 fs laser) intensity control was the only mechanism available to the optimal control methods employed that could affect reaction yields.


Journal of Physical Chemistry A | 2015

Photoactive high explosives: linear and nonlinear photochemistry of petrin tetrazine chloride.

Margo T Greenfield; Shawn McGrane; Cindy Bolme; Josiah Bjorgaard; Tammie Nelson; Sergei Tretiak; R. Jason Scharff

Pentaerythritol tetranitrate (PETN), a high explosive, initiates with traditional shock and thermal mechanisms. In this study, the tetrazine-substituted derivative of PETN, pentaerythritol trinitrate chlorotetrazine (PetrinTzCl), is being investigated for a photochemical initiation mechanism that could allow control over the chemistry contributing to decomposition leading to initiation. PetrinTzCl exhibits a photochemical quantum yield (QYPC) at 532 nm not evident with PETN. Using static spectroscopic methods, we observe energy absorption on the tetrazine (Tz) ring that results in photodissociation yielding N2, Cl-CN, and Petrin-CN as the major photoproducts. The QYPC was enhanced with increasing irradiation intensity. Experiment and theoretical calculations imply this excitation mechanism follows sequential photon absorption. Dynamic simulations demonstrate that the relaxation mechanism leading to the observed photochemistry in PetrinTzCl is due to vibrational excitation during internal conversion. PetrinTzCls single photon stability and intensity dependence suggest this material could be stable in ambient lighting, yet possible to initiate with short-pulsed lasers.


Journal of Physical Chemistry A | 2011

Quantum Chemistry Studies of Electronically Excited Nitrobenzene, TNA, and TNT

Jason Quenneville; Margo T Greenfield; David Moore; Shawn McGrane; R. Jason Scharff

The electronic excitation energies and excited-state potential energy surfaces of nitrobenzene, 2,4,6-trinitroaniline (TNA), and 2,4,6-trinitrotoluene (TNT) are calculated using time-dependent density functional theory and multiconfigurational ab initio methods. We describe the geometrical and energetic character of excited-state minima, reaction coordinates, and nonadiabatic regions in these systems. In addition, the potential energy surfaces for the lowest two singlet (S(0) and S(1)) and lowest two triplet (T(1) and T(2)) electronic states are investigated, with particular emphasis on the S(1) relaxation pathway and the nonadiabatic region leading to radiationless decay of S(1) population. In nitrobenzene, relaxation on S(1) occurs by out-of-plane rotation and pyramidalization of the nitro group. Radiationless decay can take place through a nonadiabatic region, which, at the TD-DFT level, is characterized by near-degeneracy of three electronic states, namely, S(1), S(0), and T(2). Moreover, spin-orbit coupling constants for the S(0)/T(2) and S(1)/T(2) electronic state pairs were calculated to be as high as 60 cm(-1) in this region. Our results suggest that the S(1) population should quench primarily to the T(2) state. This finding is in support of recent experimental results and sheds light on the photochemistry of heavier nitroarenes. In TNT and TNA, the dominant pathway for relaxation on S(1) is through geometric distortions, similar to that found for nitrobenzene, of a single ortho-substituted NO(2). The two singlet and lowest two triplet electronic states are qualitatively similar to those of nitrobenzene along a minimal S(1) energy pathway.


New Journal of Physics | 2009

Coherent control of multiple vibrational excitations for optimal detection

Shawn McGrane; Robert Scharff; Margo T Greenfield; David S. Moore

While the means to selectively excite a single vibrational mode using ultrafast pulse shaping are well established, the subsequent problem of selectively exciting multiple vibrational modes simultaneously has been largely neglected. The coherent control of multiple vibrational excitations has applications in control of chemistry, chemical detection and molecular vibrational quantum information processing. Using simulations and experiments, we demonstrate that multiple vibrational modes can be selectively excited with the concurrent suppression of multiple interfering modes by orders of magnitude. While the mechanism of selectivity is analogous to that of single mode selectivity, the interferences required to select multiple modes require complicated non-intuitive pulse trains. Additionally, we show that selective detection can be achieved by the optimal pulse shape, even when the nature of the interfering species is varied, suggesting that optimized detection should be practical in real world applications. Experimental measurements of the multiplex coherent anti-Stokes Raman spectra (CARS) and CARS decay times of toluene, acetone, cis-stilbene and nitromethane liquids are reported, along with optimizations attempting to selectively excite nitromethane in a mixture of the four solvents. The experimental implementation exhibits a smaller degree of signal to background enhancement than predicted, which is primarily attributed to the single objective optimization methodology and not to fundamental limitations.


Analytical and Bioanalytical Chemistry | 2016

Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

Kathryn E. Brown; Margo T Greenfield; Shawn McGrane; David S. Moore

The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.


Journal of Physical Chemistry A | 2016

Ultrafast Photodissociation Dynamics of Nitromethane

Tammie Nelson; Josiah Bjorgaard; Margo T Greenfield; Cindy Bolme; Katie Brown; Shawn McGrane; R. Jason Scharff; Sergei Tretiak

Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of controllable photoactive HE materials. In this study, the photodecomposition of NM from the nπ* state excited at 266 nm is being investigated on the femtosecond time scale. UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) are combined with nonadiabatic excited state molecular dynamics (NA-ESMD) simulations to provide a unified picture of NM photodecomposition. The FSRS spectrum of the photoproduct exhibits peaks in the NO2 region and slightly shifted C-N vibrational peaks pointing to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of ∼20 fs were predicted from NA-ESMD simulations. Predicted time scales revealed that NO2 dissociation occurs in 81 ± 4 fs and methyl nitrite formation is much slower having a time scale of 452 ± 9 fs corresponding to the excited state absorption feature with a decay of 480 ± 17 fs observed in the TA spectrum. Although simulations predict C-N bond cleavage as the primary photochemical process, the relative time scales are consistent with isomerization occurring via NO2 dissociation and subsequent rebinding of the methyl radical and nitrogen dioxide.


Analytical and Bioanalytical Chemistry | 2012

Use of the Gerchberg–Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy

David S. Moore; Shawn McGrane; Margo T Greenfield; Robert Scharff; R. E. Chalmers

AbstractWe are utilizing recent advances in ultrafast laser technology and recent discoveries in optimal shaping of laser pulses to significantly enhance the stand-off detection of explosives via control of molecular processes at the quantum level. Optimal dynamic detection of explosives is a method whereby the selectivity and sensitivity of any of a number of nonlinear spectroscopic methods are enhanced using optimal shaping of ultrafast laser pulses. We have recently investigated the Gerchberg–Saxton algorithm as a method to very quickly estimate the optimal spectral phase for a given analyte from its spontaneous Raman spectrum and the ultrafast laser pulse spectrum. Results for obtaining selective coherent anti-Stokes Raman spectra (CARS) for an analyte in a mixture, while suppressing the CARS signals from the other mixture components, are compared for the Gerchberg–Saxton method versus previously obtained results from closed-loop machine-learning optimization using evolutionary strategies. FigurePhoto of an acousto-optic modulator based pulse shaper, with red lines denoting the laser beam path. Entering at the bottom left is the transform limited pulse (spectrogram inset shows wavelength versus time in a false color plot), and exiting at the bottom right is the the arbitrarily shaped pulse


Journal of Physical Chemistry A | 2016

Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

Shawn McGrane; Cynthia Bolme; Margo T Greenfield; David E. Chavez; Susan K. Hanson; Robert Scharff

High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. We examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6 materials studied, quantum yields of photochemistry ranged from <10(-5) to 0.03 and quantum yield of fluorescence ranged from <10(-3) to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. The photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.


Proceedings of SPIE | 2009

Optimal dynamic detection of explosives

David S. Moore; Herschel Rabitz; S. D. McGrane; Margo T Greenfield; R. J. Scharff; R. E. Chalmers; Jonathan Roslund

The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.


Proceedings of SPIE | 2012

Optimal coherent control methods for explosives detection

David S. Moore; Shawn McGrane; Margo T Greenfield; Robert Scharff

We are utilizing control of molecular processes at the quantum level via the best capabilities of recent laser technology and recent discoveries in optimal shaping of laser pulses to significantly enhance the detection of explosives. Optimal dynamic detection of explosives (ODD-Ex) is a methodology whereby laser pulses are optimally shaped to simultaneously enhance the sensitivity and selectivity of any of a wide variety of spectroscopic methods for explosives signatures while reducing the influence of noise and environmental perturbations. We discuss here recent results using the Gerchberg-Saxton algorithm to provide an optimal shaped laser pulse for selective coherent anti-Stokes Raman signal generation of a single component in a mixture.

Collaboration


Dive into the Margo T Greenfield's collaboration.

Top Co-Authors

Avatar

Shawn McGrane

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David S. Moore

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Jason Scharff

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Scharff

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shawn D Mc Grane

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sergei Tretiak

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tammie Nelson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cindy Bolme

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David E. Chavez

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge