Margriet den Boer
Médecins Sans Frontières
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margriet den Boer.
PLOS ONE | 2012
Jorge Alvar; Iván Darío Vélez; Caryn Bern; Mercè Herrero; Philippe Desjeux; Jorge Cano; Jean Jannin; Margriet den Boer
As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see ‘Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101’). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica and Peru, together account for 70 to 75% of global estimated CL incidence. Mortality data were extremely sparse and generally represent hospital-based deaths only. Using an overall case-fatality rate of 10%, we reach a tentative estimate of 20,000 to 40,000 leishmaniasis deaths per year. Although the information is very poor in a number of countries, this is the first in-depth exercise to better estimate the real impact of leishmaniasis. These data should help to define control strategies and reinforce leishmaniasis advocacy.
Clinical Microbiology Reviews | 2008
Jorge Alvar; Pilar Aparicio; Abraham Aseffa; Margriet den Boer; Carmen Cañavate; Jean-Pierre Dedet; Luigi Gradoni; Rachel ter Horst; Rogelio López-Vélez; Javier Moreno
SUMMARY To date, most Leishmania and human immunodeficiency virus (HIV) coinfection cases reported to WHO come from Southern Europe. Up to the year 2001, nearly 2,000 cases of coinfection were identified, of which 90% were from Spain, Italy, France, and Portugal. However, these figures are misleading because they do not account for the large proportion of cases in many African and Asian countries that are missed due to a lack of diagnostic facilities and poor reporting systems. Most cases of coinfection in the Americas are reported in Brazil, where the incidence of leishmaniasis has spread in recent years due to overlap with major areas of HIV transmission. In some areas of Africa, the number of coinfection cases has increased dramatically due to social phenomena such as mass migration and wars. In northwest Ethiopia, up to 30% of all visceral leishmaniasis patients are also infected with HIV. In Asia, coinfections are increasingly being reported in India, which also has the highest global burden of leishmaniasis and a high rate of resistance to antimonial drugs. Based on the previous experience of 20 years of coinfection in Europe, this review focuses on the management of Leishmania-HIV-coinfected patients in low-income countries where leishmaniasis is endemic.
Clinical Infectious Diseases | 2006
Louis D. Saravolatz; Caryn Bern; Jill Adler-Moore; Juan Berenguer; Marleen Boelaert; Margriet den Boer; Robert N. Davidson; Concepción Figueras; Luigi Gradoni; Dimitris Kafetzis; Koert Ritmeijer; Eric Rosenthal; Catherine Royce; Rosario Russo; Shyam Sundar; Jorge Alvar
During the past decade, liposomal amphotericin B has been used with increasing frequency to treat visceral leishmaniasis (VL). The World Health Organization convened a workshop to review current knowledge and to develop guidelines for liposomal amphotericin B use for VL. In Europe, liposomal amphotericin B is widely used to treat VL. In Africa and Asia, the VL disease burden is high and drug access is poor; liposomal amphotericin B is available only through preferential pricing for nonprofit groups in East Africa. Clinical trials and experience demonstrate high efficacy and low toxicity for liposomal amphotericin B (total dose, 20 mg/kg) in immunocompetent patients with VL. Combination trials in areas with antileishmanial drug resistance, and treatment and secondary prophylaxis trials in VL-human immunodeficiency virus-coinfected patients, are important to safeguard the current armamentarium and to optimize regimens. The public health community should work to broaden access to preferential liposomal amphotericin B pricing by public sector VL treatment programs.
Clinical Infectious Diseases | 2006
Koert Ritmeijer; Abren Dejenie; Yibeltal Assefa; Tadesse Beyene Hundie; Jo Mesure; Gerry Boots; Margriet den Boer; Robert Davidson
BACKGROUND Antimonials are the mainstay of visceral leishmaniasis (VL) treatment in Africa. The increasing incidence of human immunodeficiency virus (HIV) coinfection requires alternative safe and effective drug regimens. Oral miltefosine has been proven to be safe and effective in the treatment of Indian VL but has not been studied in Africa or in persons with HIV and VL coinfection. METHODS We compared the efficacy of miltefosine and sodium stibogluconate (SSG) in the treatment of VL in persons in Ethiopia. A total of 580 men with parasitologically and/or serologically confirmed VL were randomized to receive either oral miltefosine (100 mg per day for 28 days) or intramuscular SSG (20 mg/kg per day for 30 days). RESULTS The initial cure rate was 88% in both treatment groups. Mortality during treatment was 2% in the miltefosine group, compared with 10% in the SSG group. Initial treatment failure was 8% in the miltefosine group, compared with 1% in the SSG group. Among the 375 patients (65%) who agreed to HIV testing, HIV seroprevalence was 29%. Among patients not infected with HIV, initial cure, mortality, and initial treatment failure rates were not significantly different (94% vs. 95%, 1% vs. 3%, and 5% vs. 1% for the miltefosine and SSG groups, respectively). Initial treatment failure with miltefosine occurred in 18% of HIV-coinfected patients, compared with treatment failure in 5% of non-HIV-infected patients. At 6 months after treatment, 174 (60%) of the 290 miltefosine recipients and 189 (65%) of the 290 SSG recipients experienced cure; 30 (10%) of 290 in the miltefosine group and 7 (2%) of 290 in the SSG group experienced relapse, and the mortality rate was 6% in the miltefosine group, compared with 12% in the SSG group. HIV-infected patients had higher rates of relapse (16 [25%] of 63 patients), compared with non-HIV-infected patients (5 [5%] of 131). CONCLUSIONS Treatment with miltefosine is equally effective as standard SSG treatment in non-HIV-infected men with VL. Among HIV-coinfected patients, miltefosine is safer but less effective than SSG.
Expert Opinion on Emerging Drugs | 2009
Margriet den Boer; Jorge Alvar; Robert N. Davidson; Koert Ritmeijer; Manica Balasegaram
Background: Visceral leishmaniasis (VL) is one of the most neglected parasitic diseases causing large scale mortality and morbidity among the poorest of the poor in the Indian subcontinent and Africa. Objective: This review aims to describe the potential and the (lack of) current impact of newly developed treatments on the control of VL. It describes how the problem of an empty research pipeline is addressed, and discusses the emerging threat of incurable HIV/VL coinfection. Methods: The literature was searched for drugs used in VL. Conclusion: Research and development of VL drugs has received a financial boost but no new drugs are expected in the next 5 years. Only three new and highly effective treatments have been licensed in the past 10 years. These remain, however, largely inaccessible as VL control programs in the developing world are lacking. This is deserving of immediate and urgent attention, especially in the context of the rapidly expanding HIV/VL coinfection.
Parasites & Vectors | 2016
M. M. Cameron; Alvaro Acosta-Serrano; Caryn Bern; Marleen Boelaert; Margriet den Boer; Sakib Burza; Lloyd A. C. Chapman; Alexandra Chaskopoulou; Michael Coleman; Orin Courtenay; Simon L. Croft; Pradeep Das; Erin Dilger; Geraldine M. Foster; Rajesh Garlapati; Lee R. Haines; Angela Harris; Janet Hemingway; T. Déirdre Hollingsworth; Sarah Jervis; Graham F. Medley; Michael A. Miles; Mark J. I. Paine; Albert Picado; Richard M. Poché; Paul D. Ready; Matthew E. Rogers; Mark Rowland; Shyam Sundar; Sake J. de Vlas
Visceral Leishmaniasis (VL) is a neglected vector-borne disease. In India, it is transmitted to humans by Leishmania donovani-infected Phlebotomus argentipes sand flies. In 2005, VL was targeted for elimination by the governments of India, Nepal and Bangladesh by 2015. The elimination strategy consists of rapid case detection, treatment of VL cases and vector control using indoor residual spraying (IRS). However, to achieve sustained elimination of VL, an appropriate post elimination surveillance programme should be designed, and crucial knowledge gaps in vector bionomics, human infection and transmission need to be addressed. This review examines the outstanding knowledge gaps, specifically in the context of Bihar State, India.The knowledge gaps in vector bionomics that will be of immediate benefit to current control operations include better estimates of human biting rates and natural infection rates of P. argentipes, with L. donovani, and how these vary spatially, temporally and in response to IRS. The relative importance of indoor and outdoor transmission, and how P. argentipes disperse, are also unknown. With respect to human transmission it is important to use a range of diagnostic tools to distinguish individuals in endemic communities into those who: 1) are to going to progress to clinical VL, 2) are immune/refractory to infection and 3) have had past exposure to sand flies.It is crucial to keep in mind that close to elimination, and post-elimination, VL cases will become infrequent, so it is vital to define what the surveillance programme should target and how it should be designed to prevent resurgence. Therefore, a better understanding of the transmission dynamics of VL, in particular of how rates of infection in humans and sand flies vary as functions of each other, is required to guide VL elimination efforts and ensure sustained elimination in the Indian subcontinent. By collecting contemporary entomological and human data in the same geographical locations, more precise epidemiological models can be produced. The suite of data collected can also be used to inform the national programme if supplementary vector control tools, in addition to IRS, are required to address the issues of people sleeping outside.
American Journal of Tropical Medicine and Hygiene | 2012
Thinley Yangzom; Israel Cruz; Caryn Bern; Daniel Argaw; Margriet den Boer; Iván Darío Vélez; Sujit K. Bhattacharya; Ricardo Molina; Jorge Alvar
Visceral leishmaniasis was first reported in Bhutan in 2006. We conducted studies of the parasite, possible vectors and reservoirs, and leishmanin skin test and risk factor surveys in three villages. Nineteen cases were reported from seven districts. Parasite typing yielded two novel microsatellite sequences, both related to Indian L. donovani. In one case village, 40 (18.5%) of 216 participants had positive leishmanin skin test results, compared with 3 (4.2%) of 72 in the other case village and 0 of 108 in the control village. Positive results were strongly associated with the village and increasing age. None of the tested dogs were infected. Eighteen sand flies were collected, 13 Phlebotomus species and 5 Sergentomyia species; polymerase chain reaction for leishmanial DNA was negative. This assessment suggests that endemic visceral leishmaniasis transmission has occurred in diverse locations in Bhutan. Surveillance, case investigations, and further parasite, vector, and reservoir studies are needed. The potential protective impact of bed nets should be evaluated.
Parasites & Vectors | 2015
Endalamaw Gadisa; Teshome Tsegaw; Adugna Abera; Dia-Eldin Elnaiem; Margriet den Boer; Abraham Aseffa; Alvar Jorge
Visceral leishmaniasis (VL, Kala-azar) is one of the growing public health challenges in Ethiopia with over 3.2 million people at risk and estimated up to 4000 new cases per year. Historically, VL was known as the diseases of the lowlanders; in the lower and upper Kola agro-ecological zones of Ethiopia. The 2005–07 out breaks in highlands of Libo Kemkem and Fogera, in the Woina Degas, that affected thousands and claimed the life of hundreds misdiagnosed as drug resistance malaria marked that VL is no more the problem of the lowlanders. The Kola (lower and upper) and the Woina Dega are the most productive agroecological zones, supporting both the ongoing and planned expansions of large or small scale agriculture and/or agriculture based industries. Thus, the (re)emergence of VL is not only a public health and social problem but also have a direct implication on the country’s economy and further development. Thus is high time for its control and/or elimination. Yet, the available data seem incomplete to plan for a cost-effective and efficient VL control strategy: there is a need to update data on vector behaviour in specific ecosystems and the roles of domestic animals need to be ascertained. The effectiveness and social acceptability of available vector control tools need be evaluated. There is a need for identifying animal reservoir(s), or establish the absence of zoonosis in Ethiopia. The planning of prevention of (re)emergence and spread of VL to areas adjacent to endemic foci need be supported with information from spatio-temporal mapping. In affected communities, available data showed that their knowledge about VL is generally very low. Thus, well designed studies to identify risk factors, as well as better tools for social mobilization with the understanding of their knowledge, aptitude and practice towards VL are necessary.
Archive | 2013
Margriet den Boer; Luis Rivas; Jorge Alvar
This chapter describes the epidemiology, current spread, and clinical aspects of HIV/Leishmania co-infection and highlights the recently released guidelines of WHO on their management. It discusses the development of resistant Leishmania strains for existing anti-Leishmania drugs and the complexity of chemotherapy for Leishmania/HIV co-infection, which relies on the same drugs that are used in uncomplicated Leishmania. Additionally, prospects for future chemotherapeutic alternatives that target Leishmania and HIV and tackle both infections simultaneously are summarized.
Clinical Infectious Diseases | 2018
Margriet den Boer; Asish Kumar Das; Fatima Akhter; Sakib Burza; V Ramesh; Be-Nazir Ahmed; Eduard E. Zijlstra; Koert Ritmeijer
Background A safe and effective short-course treatment regimen for post-kala-azar dermal leishmaniasis (PKDL) is considered essential for achieving and sustaining elimination of visceral leishmaniasis (VL) in the Indian subcontinent [1, 2]. Here, single-dose liposomal amphotericin B (AmBisome) has been adopted as a first-line regimen for VL; however the effectiveness and safety of AmBisome for PKDL has not been formally evaluated. Methods The safety and effectiveness of AmBisome 15 mg/kg, given over 15 days in 5 biweekly infusions of 3 mg/kg on an outpatient basis, was evaluated between April and November 2014 in patients with clinically diagnosed PKDL, aged ≥12 years and residing in a highly VL-endemic area in Bangladesh. This was a prospective cohort observational study, with the objective to assess final cure 12 months after treatment. Clinical response was monitored at 1, 3, 6, and 12 months, and safety during treatment and up to 1 month after treatment. Results Of the 280 patients meeting the inclusion criteria, 273 were assessed at 12 months. A complete or major improvement of lesions was seen in 245 patients (89.7%); 213 (78.0%) were considered completely cured. Lesions did not improve in 28 (10.3%) and new lesions appeared in 13 (4.8%). All patients completed treatment without severe or serious adverse events. Conclusions A short-course 15-mg/kg AmBisome regimen proved safe and effective in the treatment of clinically diagnosed PKDL in Bangladesh, and should be considered a treatment option for routine programmatic use in the VL elimination effort in the Indian subcontinent.