Marguerite A. Xenopoulos
Trent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marguerite A. Xenopoulos.
Ecology | 2006
Andrew P. Dobson; David M. Lodge; Jackie Alder; Graeme S. Cumming; Juan E. Keymer; Jacquie McGlade; H. A. Mooney; James A. Rusak; Osvaldo E. Sala; Volkmar Wolters; Diana H. Wall; Rachel Winfree; Marguerite A. Xenopoulos
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.
Ecology | 2006
Marguerite A. Xenopoulos; David M. Lodge
In response to the scarcity of tools to make quantitative forecasts of the loss of aquatic species from anthropogenic effects, we present a statistical model that relates fish species richness to river discharge. Fish richness increases logarithmically with discharge, an index of habitat space, similar to a species-area curve in terrestrial systems. We apply the species-discharge model as a forecasting tool to build scenarios of changes in riverine fish richness from climate change, water consumption, and other anthropogenic drivers that reduce river discharge. Using hypothetical reductions in discharges (of magnitudes that have been observed in other rivers), we predict that reductions of 20-90% in discharge would result in losses of 2-38% of the fish species in two biogeographical regions in the United States (Lower Ohio-Upper Mississippi and Southeastern). Additional data on the occurrence of specific species relative to specific discharge regimes suggests that fishes found exclusively in high discharge environments (e.g., Shovelnose sturgeon) would be most vulnerable to reductions in discharge. Lag times in species extinctions after discharge reduction provide a window of opportunity for conservation efforts. Applications of the species-discharge model can help prioritize such management efforts among species and rivers.
Ecosystems | 2008
Henry F. Wilson; Marguerite A. Xenopoulos
We examined the influence of watershed land use and morphology on dissolved organic carbon (DOC) concentration in 32 south-central Ontario streams having varying agricultural land-use intensities in their catchments. For streams in this region, both univariate and multivariate regression models identify the proportion of the watershed with poorly drained soils (r2 up to 0.67) as a better predictor of stream DOC concentrations than any other landscape characteristic, including the proportion of the watershed as wetland. Agricultural land use did not strongly influence DOC concentrations in our study area; however, we do show that land-use changes could significantly alter the delivery of DOC to streams in the region. We also identify how landscape–DOC relationships change over a 2-year time period, as related to season, regional climatic conditions, soil moisture, and hydrology. Our results indicate that the relationships between landscape predictors and stream DOC concentrations are temporally dynamic. Strong temporal trends are shown seasonally and in association with climate, through its control of modelled soil moisture conditions. During periods of positive and negative deviation from normal soil moisture conditions, the relationships of DOC concentrations with landscape characteristics become less predictable. We show that these dominant patterns are likely a function of varying flow paths and that anthropogenic changes that affect soil moisture conditions or flow path will in turn strongly influence DOC dynamics.
Ecology | 2002
Marguerite A. Xenopoulos; Paul C. Frost; James J. Elser
Abstratct. Phytoplankton growth and elemental composition are influenced by a number of factors such as photosynthetically active radiation (PAR) and nutrient availability. However, little is known about the influence of solar ultraviolet radiation (UVR) and interactions with nutrients on algal growth processes in situ. We tested the effects of solar radiation and phosphorus supply on algal growth kinetics and elemental composition in two boreal lakes (northwestern Ontario, Canada) during summer 1999. Growth bioassays (at five phosphorus concentrations) assessed changes in algal growth and elemental composition exposed to (1) ultraviolet A [UVA], ultraviolet B [UVB], and photosynthetically active radiation [PAR], (2) UVA and PAR, and (3) PAR only. Growth rates, calculated from changes in seston carbon and chlorophyll, responded strongly to both P and UVR. Results indicated that phytoplankton growth was co-regulated by P limitation and UVR suppression, with highest growth rates found in high P, low UVR treatments. Phytoplankton exposed to both UVA and UVB generally grew more slowly than those exposed to PAR only, even at high P levels. UVB and UVA reduced maximum growth rates by 8-66% and 1 1-21 %, respectively. Phytoplankton growth was more strongly affected by UVB in spring than later in summer, possibly due to shifts in the dominant species present. Manipulations of light and P supply both significantly affected seston C:P ratios. UVR reduced sestonic C:P. Such changes in growth rates and C:P ratios from UVR exposure may have important implications for pelagic food web dynamics.
Photochemistry and Photobiology | 1997
Marguerite A. Xenopoulos; David F. Bird
Abstract— Active oxygen species such as hydrogen peroxide are produced as a result of UV radiation interaction with natural organic matter and can build up to high concentrations in many aquatic environments. Although the resulting oxidizing potential may affect biological materials and processes, the ecological effects have not yet been studied in any detail. We examined the influence of hydrogen peroxide exposure on phytoplankton and bacterioplankton production in Lac Cromwell, a small humic lake in the Laurentian Hills (Quebec, Canada). A range of hydrogen peroxide concentrations were added to natural samples that were incubated in situ; results indicate that even small amounts of added hydrogen peroxide (50 nM inhibited bacterial production in this lake. A 100 nM addition inhibited bacteria by as much as 40%. On the other hand, low concentrations of added hydrogen peroxide usually stimulated photosynthesis. Catalase addition to eliminate hydrogen peroxide from water usually stimulated bacterial production but had no effect on algal carbon fixation. If these results represent true changes in growth rate, they indicate very different sensitivities of phytoplankton and bacteria to oxidative stress.
Environmental Science & Technology | 2012
Pranab Das; Clayton J. Williams; Roberta R. Fulthorpe; Ehsanul Hoque; Chris D. Metcalfe; Marguerite A. Xenopoulos
Silver nanoparticles (AgNPs) are widely used in commercial products as antibacterial agents, but AgNPs might be hazardous to the environment and natural aquatic bacterial communities. Our recent research demonstrated that AgNPs rapidly but temporarily inhibited natural bacterioplankton production. The current study investigates the mechanism for the observed bacterial reaction to AgNPs by examining how AgNPs impact bacterial abundance, metabolic activity (5-cyano-2,3-ditolyl tetrazolium chloride (CTC+) cells), and 16S rRNA community composition. Natural bacterioplankton communities were dosed with carboxy-functionalized AgNPs at four concentrations (0.01-1 mg-Ag/L), incubated in triplicate, and monitored over 5 days. Ionic silver (AgNO(3)) and Milli-Q water treatments were used as a positive and negative control, respectively. Four general AgNP exposure responses, relative to the negative control, were observed: (1) intolerant, (2) impacted but recovering, (3) tolerant, and (4) stimulated phylotypes. Relationships between cell activity indicators and bacterial phylotypes, suggested that tolerant and recovering bacteria contributed the most to the communitys productivity and rare bacteria phylotypes stimulated by AgNPs did not appear to contribute much to cell activity. Overall, natural bacterial communities tolerated single, low level AgNP doses and had similar activity levels to the negative control within five days of exposure, but bacterial community composition was different from that of the control.
Environmental Toxicology and Chemistry | 2012
Pranab Das; Marguerite A. Xenopoulos; Clayton J. Williams; Ehsanul Hoque; Chris D. Metcalfe
Silver nanoparticles (AgNPs) may be introduced into aquatic ecosystems because of their widespread use as antimicrobial agents. However, few studies have investigated the impacts of AgNPs on natural aquatic microbial activity in an environmentally relevant context. In this study, bacterioplankton were collected from nine aquatic habitats and exposed to six concentrations of carboxy-functionalized AgNP (ViveNano, 10-nm particle size, 20% Ag w/w) over 48 h. After 1 h of exposure, bacterial production and extracellular alkaline phosphatase affinity were significantly reduced in all AgNP-exposed samples. However, across a 48-h exposure, extracellular aminopeptidase affinity was not consistently impacted by AgNPs. After 48 h, bacterial production recovered by 40 to 250% at low AgNP nominal concentrations (0.05 and 0.1 mg/L) but remained inhibited at the two highest AgNP nominal concentrations (1 and 10 mg/L). In contrast, AgNO(3) additions between 0.01 to 2 mg Ag/L fully inhibited bacterial production over the 48-h exposure. At 48-h exposure, the lowest observed effective concentrations and average median effective concentration for bacterial production ranged from 8 to 66 and 15 to 276 µg Ag/L, respectively. Thus, in natural aquatic systems, AgNP concentrations in the nanogram per liter range are unlikely to negatively impact aquatic biogeochemical cycles. Instead, exposures in the low microgram per liter range would likely be required to negatively impact natural aquatic bacterioplankton processes.
Environmental Science & Technology | 2011
Marlia M. Hanafiah; Marguerite A. Xenopoulos; Stephan Pfister; R.S.E.W. Leuven; Mark A. J. Huijbregts
Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.
Ecosystems | 2001
Marguerite A. Xenopoulos; David W. Schindler
We report on the effect of lake size, water transparency, and wind on the frequency of transient near-surface thermoclines in 39 boreal lakes from the Experimental Lakes Area (ELA) and Northwest Ontario Lake Size Series (NOLSS). This study was based on more than 3000 archived temperature profiles amassed over a 25-year period for lakes ranging from 2 ha to 8 million ha in surface area. The incidence of transient thermoclines decreased with increasing lake size from 90% of all summer days in small lakes (less than 4 ha) to 40% or less in the larger NOLSS lakes (up to 34,700 ha). No transient near-surface thermoclines were detected in Lake Superior. Forest fires and climatic variability were also found to affect the frequency of near-surface thermoclines. Long-term trends indicate an increase in average annual wind velocity in the area, possibly as the result of extensive forest fires and clearcutting. The subsequent decrease in the frequency of shallow secondary thermoclines in aquatic ecosystems has possible consequences for the lake biota, as the result of changes in radiation, turbulence, and the nutrient regime.
Journal of Phycology | 2003
Marguerite A. Xenopoulos; Paul C. Frost
We examined how UV radiation and phosphorus (P) affect the taxonomic composition, abundance, and biomass of phytoplankton in an oligotrophic boreal lake. We exposed phytoplankton to three different solar radiation regimes (PAR + UV‐A radiation [UVAR]+ UV‐B radiation [UVBR], PAR + UVAR, and PAR only) and to five levels of P. The biomass of small chrysophytes was reduced by 350% after exposure to PAR + UVAR + UVBR compared with PAR only. No other taxa were found to be negatively affected by exposure to UVBR. Several taxa (e.g. Chry‐ sochromulina laurentiana Kling) were sensitive to UVAR, whereas others (e.g. Tabellaria flocculosa (Roth) Kutzing) were not affected by UV radiation exposure. Principal components analysis ordination separated phytoplankton that were negatively affected by UV radiation and/or positively affected by P treatments (e.g. small chrysophytes, Cryptomonas rostratiformis, T. flocculosa) from those that generally were unaffected by either treatment (e.g. desmids, some Cyanobacteria). Richness, Shannon‐Weaver diversity, and evenness were significantly higher in phytoplankton communities shielded from UVAR and UVBR. The relationship between diversity and richness was positive in all phytoplankton samples except in those exposed to UVBR. Thus, UVBR‐exposed phytoplankton communities were dominated by a few species even though the number of taxa remained relatively unchanged. Consequently, alterations in the UV environments of lakes resulting from climate warming (e.g. drought) and land‐use change (e.g. increased P export) will likely promote shifts in the community composition of lake phytoplankton.