Mari Espelund
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mari Espelund.
Nature | 2011
Bastiaan Star; Sissel Jentoft; Unni Grimholt; Martin Malmstrøm; Tone F. Gregers; Trine B. Rounge; Jonas Paulsen; Monica Hongrø Solbakken; Animesh Sharma; Ola F. Wetten; Anders Lanzén; Roger Winer; James Knight; Jan-Hinnerk Vogel; Bronwen Aken; Øivind Andersen; Karin Lagesen; Ave Tooming-Klunderud; Rolf B. Edvardsen; Kirubakaran G. Tina; Mari Espelund; Chirag Nepal; Christopher Previti; Bård Ove Karlsen; Truls Moum; Morten Skage; Paul R. Berg; Tor Gjøen; Heiner Kuhl; Jim Thorsen
Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
PLOS ONE | 2008
Kamran Shalchian-Tabrizi; Marianne A. Minge; Mari Espelund; Russell J. S. Orr; Torgeir A. Ruden; Kjetill S. Jakobsen; Thomas Cavalier-Smith
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.
PLOS ONE | 2011
Tove M. Gabrielsen; Marianne A. Minge; Mari Espelund; Ave Tooming-Klunderud; Vishwanath Patil; Christian Otis; Monique Turmel; Kamran Shalchian-Tabrizi; Claude Lemieux; Kjetill S. Jakobsen
The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata.
Plant Molecular Biology | 1997
Kristin Hollung; Mari Espelund; Kathrine Schou; Kjetill S. Jakobsen
The transcription factors VP1 (Viviparous-1), EmBP-1 (Em-binding protein 1) and OSBZ8, originally cloned and analysed in various monocot species, have been implicated in the regulation of the Lea (late embryogenesis-abundant) group 1 genes. We have investigated the modulation of the levels of these mRNAs in barley during embryogenesis, and in developing embryos subjected to various kinds of osmotic stress. The accumulation of mRNA for VP1 and EmBP-1 transcription factors, using cDNAs cloned from barley, starts at 10 and 15 days after anthesis, respectively, whereas Lea B19 mRNA levels are very low or undetectable until 25 days after anthesis during normal development. The EmBP-1 mRNA is predominantly induced in mannitol-stressed immature embryos. Vp1 mRNA was not significantly modulated by ABA, salt or mannitol. Inhibition of ABA biosynthesis by norflurazon showed that the induction of both Vp1 and EmBP-1 mRNAs was ABA-independent. In embryo-derived suspension-cultured cells, neither of the two transcripts would be induced by ABA or osmotic stress, although both OSBZ8 and one member of the Lea B19 family was up-regulated by ABA. Electrophoretic mobility shift assays using a Lea B19.1 probe with an ABRE (abscisic acid-responsive element) similar to that which binds EmBP-1 and OSBZ8 in the wheat and rice Em promoters show that the binding activity is increased by ABA and osmotic stress. Taken together, these data show that both VP1 and EmBP-1 are involved in embryo-specific signal transduction pathways, that they are differentially regulated at the mRNA level, and that EmBP-1 can be induced by osmotic stress independently of any increase in endogenous ABA. The difference in mRNA regulation patterns of OSBZ8 and EmBP-1 may suggest that they are involved in different signal transduction pathways in connection with osmotic stress/ABA regulation of Lea genes.
Plant Molecular Biology | 1995
Robin A. P. Stacy; Mari Espelund; Stein Sæbøe-Larssen; Kristin Hollung; Even Helliesen; Kjetill S. Jakobsen
The highly conserved Group 1 late embryogenesis abundant (Lea) genes are present in the genome of most plants as a gene family. Family members are conserved along the entire coding region, especially within the extremely hydrophilic internal 20 amino acid motif, which may be repeated. Cloning of Lea Group 1 genes from barley resulted in the characterization of four family members named B19.1, B19.1b, B19.3 and B19.4 after the presence of this motif 1, 1, 3 and 4 times in each gene, respectively. We present here the results of comparative and evolutionary analyses of the barley Group 1 Lea gene family (B19). The most important findings resulting from this work are (1) the tandem clustering of B19.3 and B19.4, (2) the spatial conservation of putative regulatory elements between the four B19 gene promoters, (3) the determination of the relative ‘age’ of the gene family members and (4) the ‘chimeric’ nature of B19.3 and B19.4, reflecting a cross-over or gene-conversion event in their common ancestor. We also show evidence for the presence of one or two additional expressed B19 genes in the barley genome. Based on our results, we present a model for the evolution of the family in barley, including the 20 amino acid motif. Comparisons of the relatedness between the barley family and all other known Group 1 Lea genes using maximum parsimony (PAUP) analysis provide evidence for the time of divergence between the barley genes containing the internal motif as a single copy and as a repeat. The PAUP analyses also provide evidence for independent duplications of Group 1 genes containing the internal motif as a repeat in both monocots and dicots.
Plant Molecular Biology | 1994
Kristin Hollung; Mari Espelund; Kjetill S. Jakobsen
A new member of theLea B19 gene family from barley, termed B19.1b, has been isolated and characterized. The coding region of B19.1b is highly similar to the other members of the B19 family (Espelundet al., Plant J 2 (1992) 241–252) and contains only one copy of the hydrophilic sequence found as a repeat in two other B19 genes. Like the other B19 genes, B19.1b is only expressed in embryos. The transcript appears during development at 25 days after anthesis and remains at a high level throughout embryogenesis. In immature embryos the B19.1b mRNA can be induced by abscisic acid, salt and mannitol.
PLOS ONE | 2012
Mari Espelund; Marianne A. Minge; Tove M. Gabrielsen; Kamran Shalchian-Tabrizi; Christian Otis; Monique Turmel; Claude Lemieux; Kjetill S. Jakobsen
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.
Plant Journal | 1992
Mari Espelund; Stein Sæbøe-Larssen; D. Wayne Hughes; Glenn A. Galau; Frank Larsen; Kjetill S. Jakobsen
Nucleic Acids Research | 1990
Mari Espelund; R.A.Prentice Stacy; Kjetill S. Jakobsen
Hereditas | 2004
Mari Espelund; Endashaw Bekele; Arne Holst-Jensen; Kjetill S. Jakobsen; Inger Nordal