Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Itoh is active.

Publication


Featured researches published by Mari Itoh.


Nature | 2002

FGFR-related gene nou-darake restricts brain tissues to the head region of planarians

Francesc Cebrià; Chiyoko Kobayashi; Yoshihiko Umesono; Masumi Nakazawa; Katsuhiko Mineta; Kazuho Ikeo; Takashi Gojobori; Mari Itoh; Masanori Taira; Alejandro Sánchez Alvarado; Kiyokazu Agata

The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years, methodologies such as whole-mount in situ hybridizations and double-stranded RNA have been extended to planarians with the aim of unravelling the molecular basis of their regenerative capacities. Here we report the identification and characterization of nou-darake (ndk), a gene encoding a fibroblast growth factor receptor (FGFR)-like molecule specifically expressed in the head region of the planarian Dugesia japonica. Loss of function of ndk by RNA interference results in the induction of ectopic brain tissues throughout the body. This ectopic brain formation was suppressed by inhibition of two planarian FGFR homologues (FGFR1 and FGFR2). Additionally, ndk inhibits FGF signalling in Xenopus embryos. The data suggest that ndk may modulate FGF signalling in stem cells to restrict brain tissues to the head region of planarians.


Mechanisms of Development | 2001

Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos.

Jun Shinga; Mari Itoh; Koichiro Shiokawa; Sumiko Taira; Masanori Taira

The molecular mechanisms that govern early patterning of anterior neuroectoderm (ANE) for the prospective brain region in vertebrates are largely unknown. Screening a cDNA library of Xenopus ANE led to the isolation of a Hairy and Enhancer of split- (HES)-related transcriptional repressor gene, Xenopus HES-related 1 (XHR1). XHR1 is specifically expressed in the midbrain-hindbrain boundary (MHB) region at the tailbud stage. The localized expression of XHR1 was detected as early as the early gastrula stage in the presumptive MHB region, an area just anterior to the involuting dorsal mesoderm that is demarcated by the expression of the gene Xbra. Expression of XHR1 was detected much earlier than that of other known MHB genes, XPax-2 and En-2, and also before the formation of the expression boundary between Xotx2 and Xgbx-2, suggesting that the early patterning of the presumptive MHB is independent of Xotx2 and Xgbx-2. Instead, the location of XHR1 expression appears to be determined in relation to the Xbra expression domain, since reduced or ectopic expression of Xbra altered the XHR1 expression domain according to the location of Xbra expression. In functional assays using mRNA injection, overexpression of dominant-negative forms of XHR1 in the MHB region led to marked reduction of XPax-2 and En-2 expression, and this phenotype was rescued by coexpression of wild-type XHR1. Furthermore, ectopically expressed wild-type XHR1 near the MHB region enhanced En-2 expression only in the MHB region but not in the region outside the MHB. These data suggest that XHR1 is required, but not sufficient by itself, to initiate MHB marker gene expression. Based on these data, we propose that XHR1 demarcates the prospective MHB region in the neuroectoderm in Xenopus early gastrulae.


Developmental Dynamics | 2004

Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8.

Shuichi Hayashi; Mari Itoh; Sumiko Taira; Kiyokazu Agata; Masanori Taira

Fibroblast growth factors (FGFs) mediate many cell‐to‐cell signaling events during early development. Nou‐darake (ndk), a gene encoding an FGF receptor (FGFR)‐like molecule, was found to be highly and specifically expressed in the head region of the planarian Dugesia japonica, and its functional analyses provided strong molecular evidence for the existence of a brain‐inducing circuit based on the FGF signaling pathway. To analyze the role of ndk during vertebrate development, we isolated the Xenopus ortholog of ndk, the vertebrate FGFR‐like 1 gene (XFGFRL1). Expression of XFGFRL1/Xndk was first detected in the anterior region at the late gastrula stage and dramatically increased at the early neurula stage in an overall anterior mesendodermal region, including the prechordal plate, paraxial mesoderm, anterior endoderm, and archenteron roof. This anterior expression pattern resembles that of ndk in planarians, suggesting that the expression of FGFRL1/ndk is conserved in evolution between these two distantly diverged organisms. During the tail bud stages, XFGFRL1/Xndk expression was detected in multiple regions, including the forebrain, eyes, midbrain–hindbrain boundary, otic vesicles, visceral arches, and somites. In many of these regions, XFGFRL1/Xndk was coexpressed with XFGF8, indicating that XFGFRL1/Xndk is a member of the XFGF8 synexpression group, which includes sprouty, sef, and isthmin. Developmental Dynamics 230:700–707, 2004.


Mechanisms of Development | 2005

Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis

Mikihito Shibata; Mari Itoh; Hiroki Hikasa; Sumiko Taira; Masanori Taira

The Xenopus gene crescent encodes a member of the secreted Frizzled-related protein (sFRP) family and is expressed in the head organizer region. However, the target and function of Crescent in early development are not well understood. Here, we describe a role of Crescent in the regulation of convergent extension movements (CEMs) during gastrulation and neurulation. We show that overexpression of Crescent in whole embryos or animal caps inhibits CEMs without affecting tissue specification. Consistent with this, Crescent efficiently forms complexes with Xwnt11 and Xwnt5a, in contrast to another sFRP, Frzb1. As expected, the inhibitory effect of Crescent or Xwnt11 on CEMs is cancelled when both proteins are coexpressed in the neuroectoderm. Interestingly, when coexpressed in the dorsal mesoderm, the activity of Xwnt11 is rather enhanced by Crescent. Supporting this finding, the inhibition of CEMs by Crescent in mesodermalized but not neuralized animal caps is reversed by the dominant-negative form of Cdc42, a putative mediator of Wnt/Ca2+ pathway. Antisense morpholino oligos for Crescent impair neural plate closure and elicit microcephalic embryos with a shortened trunk without affecting early tissue specification. These data suggest a potential role for Crescent in head formation by regulating a non-canonical Wnt pathway positively in the adjacent posterior mesoderm and negatively in the overlying anterior neuroectoderm.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The keratin-related Ouroboros proteins function as immune antigens mediating tail regression in Xenopus metamorphosis

Katsuki Mukaigasa; Akira Hanasaki; Mitsugu Maéno; Hiroshi Fujii; Shin-ichiro Hayashida; Mari Itoh; Makoto Kobayashi; Shin Tochinai; Masayuki Hatta; Kazuya Iwabuchi; Masanori Taira; Kazunori Onoé; Yumi Izutsu

Tail resorption during amphibian metamorphosis has been thought to be controlled mainly by a cell-autonomous mechanism of programmed cell death triggered by thyroid hormone. However, we have proposed a role for the immune response in metamorphosis, based on the finding that syngeneic grafts of tadpole tail skin into adult Xenopus animals are rejected by T cells. To test this, we identified two tail antigen genes called ouro1 and ouro2 that encode keratin-related proteins. Recombinant Ouro1 and Ouro2 proteins generated proliferative responses in vitro in T cells isolated from naive adult Xenopus animals. These genes were expressed specifically in the tail skin at the climax of metamorphosis. Overexpression of ouro1 and ouro2 induced T-cell accumulation and precocious tail degeneration after full differentiation of adult-type T cells when overexpressed in the tail region. When the expression of ouro1 and ouro2 were knocked down, tail skin tissue remained even after metamorphosis was complete. Our findings indicate that Ouro proteins participate in the process of tail regression as immune antigens and highlight the possibility that the acquired immune system contributes not only to self-defense but also to remodeling processes in vertebrate morphogenesis.


Gene | 2002

Comprehensive sequence analysis of translation termination sites in various eukaryotes

Yosuke Ozawa; S. Hanaoka; R. Saito; Takanori Washio; S. Nakano; Akira Shinagawa; Mari Itoh; Kiyoshi Shibata; Piero Carninci; Hideaki Konno; Jun Kawai; Hayashizaki Y; Masaru Tomita

Recent investigations into the translation termination sites of various organisms have revealed that not only stop codons but also sequences around stop codons have an effect on translation termination. To investigate the relationship between these sequence patterns and translation as well as its termination efficiency, we analysed the correlation between strength of consensus and translation efficiency, as predicted according to Codon Adaptation Index (CAI) value. We used RIKEN full-length mouse cDNA sequences and ten other eukaryotic UniGene datasets from NCBI for the analyses. First, we conducted sequence profile analyses following translation termination sites. We found base G and A at position +1 as a strong consensus for mouse cDNA. A similar consensus was found for other mammals, such as Homo sapiens, Rattus norvegicus and Bos taurus. However, some plants had different consensus sequences. We then analysed the correlation between the strength of consensus at each position and the codon biases of whole coding regions, using information content and CAI value. The results showed that in mouse cDNA, CAI value had a positive correlation with information content at positions +1. We also found that, for positions with strong consensus, the strength of the consensus is likely to have a positive correlation with CAI value in some other eukaryotes. Along with these observations, biological insights into the relationship between gene expression level, codon biases and consensus sequence around stop codons will be discussed.


Mechanisms of Development | 2002

Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos

Makiko Fujita; Mari Itoh; Mikihito Shibata; Surniko Taira; Masanori Taira

To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.


Nature Communications | 2017

Activation of the hypothalamic feeding centre upon visual prey detection

Akira Muto; Pradeep Lal; Deepak Ailani; Gembu Abe; Mari Itoh; Koichi Kawakami

The visual system plays a major role in food/prey recognition in diurnal animals, and food intake is regulated by the hypothalamus. However, whether and how visual information about prey is conveyed to the hypothalamic feeding centre is largely unknown. Here we perform real-time imaging of neuronal activity in freely behaving or constrained zebrafish larvae and demonstrate that prey or prey-like visual stimuli activate the hypothalamic feeding centre. Furthermore, we identify prey detector neurons in the pretectal area that project to the hypothalamic feeding centre. Ablation of the pretectum completely abolishes prey capture behaviour and neurotoxin expression in the hypothalamic area also reduces feeding. Taken together, these results suggest that the pretecto-hypothalamic pathway plays a crucial role in conveying visual information to the feeding centre. Thus, this pathway possibly converts visual food detection into feeding motivation in zebrafish.


Gene Expression Patterns | 2002

RETRACTED: Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos

Makiko Fujita; Mari Itoh; Mikihito Shibata; Sumiko Taira; Masanori Taira

To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.


Archive | 2016

Gal4 Driver Transgenic Zebrafish

Koichi Kawakami; Kazuhide Asakawa; Masahiko Hibi; Mari Itoh; Akira Muto; Hironori Wada

Targeted expression by the Gal4-UAS system is a powerful genetic method to analyze the functions of genes and cells in vivo. Although the Gal4-UAS system has been extensively used in genetic studies in Drosophila, it had not been applied to genetic studies in vertebrates until the mid-2000s. This was mainly due to the lack of an efficient transgenesis tool in model vertebrates, such as the P-transposable element of Drosophila, that can create hundreds or thousands of transgene insertions in different loci on the genome and thereby enables the generation of transgenic lines expressing Gal4 in various tissues and cells via enhancer trapping. This situation was revolutionized when a highly efficient transgenesis method using the Tol2 transposable element was developed in the model vertebrate zebrafish. By using the Tol2 transposon system, we and other labs successfully performed gene trap and enhancer trap screens in combination with the Gal4-UAS system. To date, numerous transgenic fish lines that express engineered versions of Gal4 in specific cells, organs, and tissues have been generated and used for various aspects of biological studies. By constructing transgenic fish lines harboring genes of interest downstream of UAS, the Gal4-expressing cells and tissues in those transgenic fish have been visualized and manipulated via the Gal4-UAS system. In this review, we describe how the Gal4-UAS system works in zebrafish and how transgenic zebrafish that express Gal4 in specific cells, tissues, and organs have been used for the study of developmental biology, organogenesis, and neuroscience.

Collaboration


Dive into the Mari Itoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koichi Kawakami

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Muto

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak Ailani

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Tanabe

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hironori Wada

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge