Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Nakayama is active.

Publication


Featured researches published by Mari Nakayama.


Journal of Cardiovascular Pharmacology | 2001

Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats

Chikara Satoh; Noboru Fukuda; Wen Yang Hu; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

In culture, vascular smooth muscle cells (VSMC) derived from spontaneously hypertensive rats (SHR) show exaggerated growth compared with cells from normotensive Wistar-Kyoto (WKY) rats. SHR-derived VSMC express higher levels of transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF) A-chain, and basic fibroblast growth factor (bFGF) mRNAs than cells from WKY rats. We have recently observed production of angiotensin II (Ang II) in homogeneous cultures of VSMC from SHR. In the current study we investigated the contribution of endogenous Ang II to increased expression of the above-mentioned growth factors in VSMC from SHR. The levels of mRNAs encoding TGF-β1, PDGF A-chain, and bFGF were determined by reverse transcription-polymerase chain reaction and were much higher in VSMC from SHR than in cells from WKY rats. The basal level of Ang II-like immunoreactivity (LI) in conditioned medium as determined by radioimmunoassay was significantly higher in VSMC from SHR than in cells from WKY rats. Isoproterenol is known to induce angiotensinogen gene significantly increased Ang II-LI in VSMC from both WKY rats and SHR. Isoproterenol also increased angiotensinogen, TGF-β1, PDGF A-chain, and bFGF mRNAs in VSMC from SHR. An angiotensin-converting enzyme inhibitor delapril significantly decreased Ang II-LI in VSMC from WKY rats and SHR. Delapril considerably decreased the levels of TGF-β1, PDGF A-chain, and bFGF mRNAs in VSMC from SHR. An Ang II type 1 receptor antagonist CV11974 decreased the levels of TGF-β1, PDGF A-chain, and bFGF mRNAs, and the levels of TGF-β1, PDGF-AA, and bFGF proteins in VSMC from SHR. These findings suggest that increased generation of Ang II is associated with enhanced expression of TGF-β1, PDGF A-chain, and bFGF, and the increases in the levels of these growth factors by endogenous Ang II may contribute to the exaggerated growth of VSMC from SHR.


Journal of Hypertension | 1999

Contribution of synthetic phenotype on the enhanced angiotensin II-generating system in vascular smooth muscle cells from spontaneously hypertensive rats.

Noboru Fukuda; Wen Yang Hu; Chikara Satoh; Mari Nakayama; Hirobumi Kishioka; Atsushi Kubo; Katsuo Kanmatsuse

OBJECTIVE We have demonstrated that cultured vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR), but not from normotensive Wistar-Kyoto (WKY) rats, produce angiotensin II (Ang II) in a homogeneous culture with increased levels of angiotensinogen, cathepsin D and angiotensin converting enzyme (ACE) at early passages. In the current study, we investigated how changes in the cell phenotype affect the Ang II-generating system and the growth of VSMC from SHR. DESIGN AND METHODS We evaluated basal DNA synthesis by [3H]thymidine incorporation, immunofluorescence of alpha-smooth muscle (SM) actin, mRNA expression of phenotype markers such as SM22alpha appeared by contractile phenotype, Ang II-generating system components and growth factors by reverse transcription and polymerase chain reaction analysis, and Ang II levels by radioimmunoassay in quiescent VSMC from WKY/Izumo rats and SHR/Izumo at passages 4, 8 and 12. RESULTS Basal DNA synthesis in VSMC from WKY rats increased with increasing passage number, whereas in cells from SHR it was markedly higher at early passages and was not affected by the passages. At early passage numbers, immunofluorescence of alpha-SM actin was stronger in VSMC from WKY rats than in cells from SHR, but decreased after several passages. Expression of SM22alpha mRNA was higher in VSMC from WKY rats than in cells from SHR at early passages, and decreased after several passages in cells from both rat strains. Expression of matrix Gla mRNA was higher in VSMC from SHR than in cells from WKY rats at early passage, and increased after several passages in cells from both rat strains. Ang II was not detected at early passages but increased in VSMC from WKY rats with increasing passage, whereas it was detected in VSMC from SHR at early passages and did not change with the passages. Expression of angiotensinogen mRNA was higher in VSMC from SHR than in cells from WKY rats, and was not affected by the passages. Expressions of cathepsin D and ACE mRNA were higher in VSMC from SHR than in cells from WKY rats at early passage, and were increased by the passages in VSMC from WKY rats. Expressions of transforming growth factor-beta1, platelet-derived growth factor A-chain, and basic fibroblast growth factor mRNA were significantly higher in VSMC from SHR than in cells from WKY rats, and were increased by the passages. CONCLUSION These data indicate that early in culture VSMC from SHR have the synthetic phenotype, whereas VSMC from WKY rats have the contractile phenotype which then changes to the synthetic phenotype after increased passage numbers, with increased expression of cathepsin D and ACE, which produce Ang II, and increased expression of Ang II-related growth factors, which induce the exaggerated growth observed in VSMC from SHR.


Journal of Hypertension | 2001

Endogenous angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats

Noboru Fukuda; Chikara Satoh; Wen Yang Hu; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

Background Angiotensin II (Ang II) has been reported to inhibit insulin signaling at multiple levels in vascular smooth muscle cells (VSMC) in vitro. We have demonstrated that VSMC from spontaneously hypertensive rats (SHR) produce Ang II in a homogenous culture. Objective In the current study, we investigated influences of endogenous Ang II on insulin signaling in VSMC from SHR. Design and methods Phosphatidylinositol 3-kinase (PI3-kinase) activity, insulin receptor substrate-1 (IRS-1) associated tyrosine phospholyration, and p85 subunit of PI3-kinase were measured in VSMC from SHR and normotensive Wistar–Kyoto (WKY) rats in the absence and presence of Ang II type 1 receptor antagonist RNH6270 and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor U0126. Results Insulin treatment increased PI3-kinase activity in VSMC from WKY rats in a dose-dependent manner. In contrast, insulin treatment of VSMC from SHR did not affect PI3-kinase activity. However, co-treatment of VSMC from SHR with RNH6270 and insulin, increased PI3-kinase activity. PI3-kinase activity, IRS-1-associated tyrosine phosphorylation and p85 subunit of PI3-kinase in VSMC from WKY rats decreased in response to treatment with Ang II and returned to control levels upon co-treatment with U0126. Basal levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase were significantly lower in VSMC from SHR than in cells from WKY rats. U0126 treatment of VSMC from SHR significantly increased levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase. Conclusion These results indicate that endogenous Ang II suppresses insulin signaling in VSMC from SHR by activating extracellular signal-regulated kinase. These findings suggest that tissue Ang II may play a role in insulin resistance in hypertension.


Journal of Hypertension | 1999

Low dose of eicosapentaenoic acid inhibits the exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats through suppression of transforming growth factor-β

Mari Nakayama; Noboru Fukuda; Yoshiyasu Watanabe; Masayoshi Soma; Wen Yang Hu; Hirobumi Kishioka; Chikara Satoh; Atsushi Kubo; Katsuo Kanmatsuse

OBJECTIVE To evaluate effects of eicosapentaenoic acid (EPA), an n-3 polyunsaturated fatty acid, on the exaggerated growth of vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR). DESIGN Cultured VSMC were prepared by an explant method from thoracic aortas in 8-week-old male Wistar-Kyoto (WKY)/Izumo rats and SHR/Izumo. Effects of EPA on basal DNA synthesis, expression of growth factors and cyclin-dependent kinase 2 (cdk2) activity were examined in VSMC from WKY rats and SHR. METHODS The cell cycles were synchronized with serum deprivation, then DNA synthesis in VSMC was measured by [3H]-thymidine incorporation. Fatty acid composition of the phospholipid fraction in VSMC was measured by gas chromatography. Expression of platelet-derived growth factor (PDGF) A-chain, transforming growth factor (TGF)-beta1 and basic fibroblast growth factor (bFGF) mRNAs was evaluated by reverse-transcription and polymerase chain reaction analysis. Cdk2 activity was determined by autoradiography after polyacrylamide gel electrophoresis of VSMC extracts that had been immunoprecipitated with anti-cdk2 antibody and protein A sepharose, and then incubated with 32P-ATP and histone H1. RESULTS High concentrations (40 and 80 micromol/I) of EPA significantly inhibited basal DNA synthesis in VSMC from both rat strains. Low dose (20 micromol/l) of EPA significantly inhibited basal DNA synthesis in VSMC from SHR, whereas the same dose of EPA stimulated DNA synthesis in VSMC from WKY rats. In analysis of fatty acid composition, low dose of EPA was considerably incorporated in VSMC. Low dose of EPA significantly inhibited angiotensin II- and phorbol ester milisterol-stimulated DNA synthesis in VSMC from both rat strains, whereas EPA did not affect PDGF-AA-stimulated DNA synthesis in VSMC from either rat strain. Low dose of other polyunsaturated fatty acids such as docosahexaenoic acid, arachidonic acid and linoleic acid did not significantly affect basal DNA synthesis in VSMC from either strain. Low dose of EPA significantly inhibited expression of TGF-beta1 mRNA in VSMC from SHR, whereas EPA did not affect expression of PDGF A-chain and bFGF mRNAs in VSMC from SHR. Cdk2 activity in VSMC from SHR was higher than that from WKY rats. Low dose of EPA inhibited cdk2 activity in VSMC from SHR, whereas it stimulated the activity in VSMC from WKY rats. CONCLUSION Low dose of EPA exerted specific inhibition of the exaggerated growth of VSMC from SHR through the suppression of TGF-beta.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Phenotypic Modulation by Fibronectin Enhances the Angiotensin II–Generating System in Cultured Vascular Smooth Muscle Cells

Wen Yang Hu; Noboru Fukuda; Chikara Satoh; Teng Jian; Atsushi Kubo; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

We previously demonstrated that homogeneous cultures of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats produce angiotensin II (Ang II) in response to increases in the levels of angiotensinogen, cathepsin D, and angiotensin-converting enzyme (ACE). The change of VSMCs from the contractile to the synthetic phenotype increased the amount of synthetic organelles, resulting in the production of proteases and growth factors. To evaluate the contribution of the synthetic phenotype to the generation of Ang II, we examined the effect of fibronectin (FN), which reportedly induces the synthetic phenotype, on the Ang II-generating system in VSMCs. Cultured VSMCs from Wistar-Kyoto rats were incubated with an active fragment of FN, Arg-Gly-Asp-Ser, for 24, 48, or 72 hours after synchronization of the cell cycle with 0. 2% calf serum for 48 hours. Immunofluorescence and protein levels of alpha-smooth muscle (SM) actin and expression of SM22alpha mRNA, apparent in the contractile phenotype, were suppressed by FN, whereas expression of matrix Gla mRNA and osteopontin mRNA and protein, apparent in the synthetic phenotype, was increased. FN (1 to 1000 microg/mL) dose-dependently increased DNA synthesis in the VSMCs, which was inhibited by the Ang II type 1 receptor antagonist CV-11974. Ang II-like immunoreactivity as determined by radioimmunoassay was significantly increased in conditioned medium from the VSMCs. In addition, mRNA for the Ang II-generating proteases cathepsin D and ACE was increased by FN. Expression of transforming growth factor-beta1, platelet-derived growth factor A-chain, and basic fibroblast growth factor mRNAs was also increased by FN. These results indicate that the changes accompanying the alteration to the synthetic phenotype in homogeneous cultures of VSMCs increase expression of proteases such as cathepsin D and ACE, which then produce Ang II, and that these changes increase expression of growth factors that then induce growth of VSMCs.


Atherosclerosis | 2002

Troglitazone inhibits growth and improves insulin signaling by suppression of angiotensin II action in vascular smooth muscle cells from spontaneously hypertensive rats.

Noboru Fukuda; Wen Yang Hu; Jian Teng; Satoh Chikara; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

Troglitazone, a thiazolizidinedione, has recently been reported to possess anti-arteriosclerotic properties. To evaluate mechanisms underlying the anti-arteriosclerotic effects of troglitazone, we examined the effect of troglitazone on growth, expression of growth factors, and insulin signaling in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) which produce angiotensin II (Ang II) in a homogeneous culture. Troglitazone inhibited basal and serum-stimulated DNA synthesis and inhibited increases in the number of VSMC from SHR and normotensive Wistar-Kyoto (WKY) rats. Its inhibition was greater in VSMC from SHR. Troglitazone abolished DNA synthesis in response to Ang II in VSMC from both rat strains and markedly inhibited DNA synthesis in response to epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-AA in VSMC from SHR. Troglitazone did not alter the expression of transforming growth factor (TGF)-beta1, PDGF A-chain, or basic fibroblast growth factor (bFGF) mRNAs in VSMC from WKY rats, but it markedly decreased expression of these growth factor mRNAs in VSMC from SHR. Troglitazone markedly decreased basal and Ang II-stimulated expression of extracellular signal-regulated kinase proteins in VSMC from both rat strains. Troglitazone abolished Ang II-induced suppression of phosphatidilinositol 3-kinase (PI3-kinase) activity, insulin receptor substrate-1 (IRS-1) associated tyrosine phosphorylation, and IRS-1 associated p85 levels in VSMC from WKY rats. Basal PI3-kinase activity, tyrosine phosphorylation of IRS-1, and IRS-1 associated p85 levels were lower in VSMC from SHR than in cells from WKY rats. Troglitazone significantly increased PI3-kinase activity, IRS-1 associated tyrosine phosphorylation, and IRS-1 associated p85 levels in VSMC from SHR. These results indicate that troglitazone produce its anti-arteriosclerotic effects through suppression of the action of growth-promoting factors including Ang II, and that troglitazone inhibits Ang II-induced suppression of insulin signaling in VSMC from SHR, suggesting that tissue Ang II may lead to insulin resistance and to arteriosclerosis in hypertension. Troglitazone may be useful in the treatment of insulin resistance as well as of hypertensive vascular diseases.


American Journal of Hypertension | 2000

Angiotensin II regulates the cell cycle of vascular smooth muscle cells from SHR

Atsushi Kubo; Noboru Fukuda; Jian Teng; Chikara Satoh; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

We have demonstrated that spontaneously hypertensive rats (SHR)-derived vascular smooth muscle cells (VSMC) show the exaggerated growth and produce angiotensin II (Ang II). In the current study, we investigated the role of endogenous Ang II in the regulation of the cell cycle in VSMC from SHR. Levels of Ang II in conditioned medium from SHR-derived VSMC cultured without serum were significantly higher than levels in conditioned medium from Wistar-Kyoto (WKY) rat-derived VSMC. Basal DNA synthesis was higher in quiescent VSMC from SHR than that in cells from WKY rats. An Ang II type 1 receptor antagonist, CV11974, significantly inhibited the elevation in DNA synthesis in quiescent VSMC from SHR but did not affect it in cells from WKY rats. Cellular DNA content analysis by flow cytometry revealed that the proportion of cells in S phase was higher, whereas the proportion of cells in G1+G0 phase was lower in VSMC from SHR than those in cells from WKY rats. CV11974 significantly decreased the proportion of cells in S phase and correspondingly increased the proportion of cells in G1+G0 phase in VSMC from SHR, but it did not affect the proportion in cells from WKY rats. Cyclin-dependent kinase 2 (CDK2) activity, which is known to induce the progression from G1 to S phase, was higher in VSMC from SHR than in cells from WKY rats. Expression of CDK2 inhibitor p27(kip1) mRNA was markedly higher in VSMC from SHR than in cells from WKY rats. CV11974 decreased expression of p27(kip1) mRNA in VSMC from SHR, whereas CV11974 increased it in cells from WKY rats. These findings indicate that enhanced production of endogenous Ang II regulates the cell cycle especially in the progression from G1 to S phase, and increases CDK2 activity, which is independent of p27(kip1) in VSMC from SHR.


Journal of Hypertension | 2001

Inhibition of vascular smooth muscle cell proliferation by Dna-rna chimeric hammerhead ribozyme targeting to rat platelet-derived growth factor A-chain mrna

Wen Yang Hu; Noboru Fukuda; Mari Nakayama; Hirobumi Kishioka; Katsuo Kanmatsuse

Background Spontaneously hypertensive rats (SHR)-derived vascular smooth muscle cells (VSMC) show exaggerated growth and increasingly express platelet-derived growth factor (PDGF) A-chain mRNA compared to VSMC from normotensive Wistar–Kyoto (WKY) rats. Objective To investigate the effects of designed DNA-RNA chimeric hammerhead ribozyme to rat PDGF A-chain on exaggerated growth of VSMC from SHR. Design and methods We designed and synthesized a 38-base DNA-RNA chimeric hammerhead ribozyme with two phosphorothioate linkages at the 3′ terminal to cleave rat PDGF A-chain mRNA at the GUC sequence at nucleotide 921. We confirmed the cleavage activity of designed ribozyme by in vitro cleavage reaction and by lipofectin-mediated transfection of ribozyme into VSMC. Results Doses of 0.1 and 1 μmol/l DNA-RNA chimeric ribozyme dose-dependently inhibited basal DNA synthesis in VSMC from SHR. A dose of 1 μmol/l DNA-RNA chimeric ribozyme time-dependently inhibited basal DNA synthesis in VSMC from SHR. However, the same doses of all-RNA ribozyme had no effects on DNA synthesis in VSMC from SHR. Fluorescein isothiocyanate-labeled DNA-RNA chimeric ribozyme was recognized in cytosol at 30 min, and in nucleus at 60 min after lipofectin transfection. A dose of 1 μmol/l DNA-RNA chimeric ribozyme significantly inhibited expressions of both PDGF A-chain mRNA and PDGF-AA protein in VSMC from SHR, but not from WKY rats. Conclusion These results indicated that the designed DNA-RNA chimeric ribozyme to PDGF A-chain mRNA effectively and specifically inhibited the exaggerated growth of VSMC from SHR at low concentrations, which were mediated by the reduction of PDGF A-chain mRNA and PDGF-AA protein expressions.


American Journal of Hypertension | 2001

Effects of PDGF a-chain antisense oligodeoxynucleotides on growth of cardiovascular organs in stroke-prone spontaneously hypertensive rats

Hirobumi Kishioka; Noboru Fukuda; Hu Wen-Yang; Mari Nakayama; Yoshiyasu Watanabe; Katsuo Kanmatsuse

We examined the effects of the platelet-derived growth factor (PDGF) A-chain antisense oligodeoxynucleotides (ODN) on cardiovascular organ growth in stroke-prone spontaneously hypertensive rats (SHR-SP) in vivo. Expression of PDGF A-chain mRNA was higher in the aorta and kidney in 9-week-old SHR-SP than in Wistar-Kyoto (WKY) rats. A phosphorothioate-linked 15-mer antisense ODN complementary to the initiation codon region of rat PDGF A-chain mRNA and a control sense ODN were infused subcutaneously into SHR-SP/Izumo at a dose of 90 ng/g body weight/day for 28 days using an implanted ALZET pump. The PDGF A-chain antisense ODN did not affect blood pressure or body weight. The antisense ODN significantly inhibited [3H]thymidine incorporation into the DNA in the aorta and kidney but not in the heart. Infusion of the antisense ODN considerably reduced production of PDGF A-chain protein but did not affect expression of PDGF A-chain mRNA. Infusion of the antisense ODN considerably improved the arterial and renal tissue damage in SHR-SP morphologically. From these findings, it can be confirmed that suppression of PDGF A-chain by the antisense DNA is useful as a gene therapy for treating cardiovascular organ damage in hypertension.


Atherosclerosis | 2001

Hammerhead ribozyme targeting human platelet-derived growth factor A-chain mRNA inhibited the proliferation of human vascular smooth muscle cells

Wen Yang Hu; Noboru Fukuda; Hirobumi Kishioka; Mari Nakayama; Chikara Satoh; Katsuo Kanmatsuse

Platelet-derived growth factor (PDGF) A-chain contributes to the pathogenesis of cardiovascular proliferative diseases, such as hypertensive vascular disease, atherosclerosis, and re-stenosis of an artery after angioplasty. To develop a ribozyme against human PDGF A-chain mRNA as a gene therapy for human arterial proliferative diseases, we designed and synthesized a 38-base hammerhead ribozyme to cleave human PDGF A-chain mRNA at the GUC sequence at nucleotide 591. In the presence of MgCl(2), synthetic hammerhead ribozyme to human PDGF A-chain mRNA cleaved the synthetic target RNA to two RNA fragments at a predicted size. Doses of 0.01-1.0 microM hammerhead ribozyme to human PDGF A-chain mRNA significantly inhibited angiotensin II (Ang II) and transforming growth factor (TGF)-beta(1)-induced DNA synthesis in vascular smooth muscle cells (VSMC) from human in a dose-dependent manner. One micromolor of hammerhead ribozyme to human PDGF A-chain mRNA significantly inhibited Ang II-induced PDGF A-chain mRNA and PDGF-AA protein expressions in VSMC from humans. These results indicate that the designed hammerhead ribozyme to human PDGF A-chain mRNA effectively inhibited growth of human VSMC by cleaving the PDGF A-chain mRNA and inhibiting the PDGF-AA protein expression in human VSMC. This suggests that the designed hammerhead ribozyme to PDGF A-chain mRNA is a feasible gene therapy for treating arterial proliferative diseases.

Collaboration


Dive into the Mari Nakayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Kubo

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge