Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Ogiue-Ikeda is active.

Publication


Featured researches published by Mari Ogiue-Ikeda.


Molecular and Cellular Endocrinology | 2008

Estrogen synthesis in the brain—Role in synaptic plasticity and memory

Yasushi Hojo; Gen Murakami; Hideo Mukai; Shimpei Higo; Yusuke Hatanaka; Mari Ogiue-Ikeda; Hirotaka Ishii; Tetsuya Kimoto; Suguru Kawato

Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200-1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis. Localization of P450(17alpha), P450arom, 17beta-HSD and 5alpha-reductase is observed in principal glutamatergic neurons in CA1, CA3 and the dendate gyrus. Several nanomolar levels of estrogen and androgen are observed in the hippocampus. Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. Rapid action of 17beta-estradiol via membrane receptors is demonstrated for spinogenesis and long-term depression (LTD). The enhancement of LTD by 1-10nM estradiol occurs within 1 h. The density of spine is increased in CA1 pyramidal neurons within 2h after application of estradiol. The density of spine-like structure is, however, decreased by estradiol in CA3 pyramidal neurons. ERalpha, but not ERbeta, induces the same enhancement/suppression effects on both spinogenesis and LTD.


Journal of Neurochemistry | 2007

Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons

Hideo Mukai; Tomokazu Tsurugizawa; Gen Murakami; Shiro Kominami; Hirotaka Ishii; Mari Ogiue-Ikeda; Norio Takata; Nobuaki Tanabe; Aizo Furukawa; Yasushi Hojo; Yuuki Ooishi; John H. Morrison; William G.M. Janssen; John A. Rose; Pierre Chambon; Shigeaki Kato; Shunsuke Izumi; Takeshi Yamazaki; Tetsuya Kimoto; Suguru Kawato

Rapid modulation of hippocampal synaptic plasticity by estrogen has long been a hot topic, but analysis of molecular mechanisms via synaptic estrogen receptors has been seriously difficult. Here, two types of independent synaptic plasticity, long‐term depression (LTD) and spinogenesis, were investigated, in response to 17β‐estradiol and agonists of estrogen receptors using hippocampal slices from adult male rats. Multi‐electrode investigations demonstrated that estradiol rapidly enhanced LTD not only in CA1 but also in CA3 and dentate gyrus. Dendritic spine morphology analysis demonstrated that the density of thin type spines was selectively increased in CA1 pyramidal neurons within 2 h after application of 1 nm estradiol. This enhancement of spinogenesis was completely suppressed by mitogen‐activated protein (MAP) kinase inhibitor. Only the estrogen receptor (ER) alpha agonist, (propyl‐pyrazole‐trinyl)tris‐phenol (PPT), induced the same enhancing effect as estradiol on both LTD and spinogenesis in the CA1. The ERbeta agonist, (4‐hydroxyphenyl)‐propionitrile (DPN), suppressed LTD and did not affect spinogenesis. Because the mode of synaptic modulations by estradiol was mostly the same as that by the ERalpha agonist, a search was made for synaptic ERalpha using purified RC‐19 antibody qualified using ERalpha knockout (KO) mice. Localization of ERalpha in spines of principal glutamatergic neurons was demonstrated using immunogold electron microscopy and immunohistochemistry. ERalpha was also located in nuclei, cytoplasm and presynapses.


Neuroendocrinology | 2006

Local Neurosteroid Production in the Hippocampus: Influence on Synaptic Plasticity of Memory

Hideo Mukai; Tomokazu Tsurugizawa; Mari Ogiue-Ikeda; Gen Murakami; Yasushi Hojo; Hirotaka Ishii; Tetsuya Kimoto; Suguru Kawato

In neuroendocrinology, it is believed that steroid hormones are synthesized in the gonads and/or adrenal glands, and reach the brain via the blood circulation. In contrast to this view, we are in progress of demonstrating that estrogens and androgens are also synthesized locally by cytochrome P450s in the hippocampus, and that these steroids act rapidly to modulate neuronal synaptic plasticity. We demonstrated that estrogens were locally synthesized in the adult hippocampal neurons. In the pathway of steroidogenesis, cholesterol is converted to pregnenolone (by P450scc), dehydroepiandrosterone [by P450(17α)], androstenediol (by 17β-hydroxysteroid dehydrogenase, 17β-HSD), testosterone (by 3β-HSD) and finally to estradiol (by P450arom) and dihydrotestosterone (by 5α-reductase). The basal concentration of estradiol in the hippocampus was approximately 1 nM, which was greater than that in blood plasma. Significant expression of mRNA for P450scc, P450(17α), P450arom, 17β-HSD, 3β-HSD and 5α-reductase was demonstrated by RT-PCR. Their mRNA levels in the hippocampus were 1/200–1/5,000 of those in the endocrine organs. Localization of P450(17α) and P450arom was observed in synapses in addition to endoplasmic reticulum of principal neurons using immunoelectron microscopy. Different from slow action of gonadal estradiol which reaches the brain via the blood circulation, hippocampal neuron-derived estradiol may act locally and rapidly within the neurons. For example, 1 nM 17β-estradiol rapidly enhanced the long-term depression (LTD) not only in CA1 but also in CA3 and dentate gyrus. The density of thin spines was selectively increased within 2 h upon application of 1 nM estradiol in CA1 pyramidal neurons. Only ERα agonist propyl-pyrazole-trinyl-phenol induced the same enhancing effect as estradiol on both LTD and spinogenesis in the CA1. ERβ agonist hydroxyphenyl-propionitrile suppressed LTD and did not affect spinogenesis. Localization of estrogen receptor ERα in spines in addition to nuclei of principal neurons implies that synaptic ERα can drive rapid modulation of synaptic plasticity by endogenous estradiol.


Biochimica et Biophysica Acta | 2010

Modulation of synaptic plasticity by brain estrogen in the hippocampus

Hideo Mukai; Tetsuya Kimoto; Yasushi Hojo; Suguru Kawato; Gen Murakami; Shimpei Higo; Yusuke Hatanaka; Mari Ogiue-Ikeda

The hippocampus is a center for learning and memory as well as a target of Alzheimers disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention. Hippocampal estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly. Slow actions of 17ß-estradiol (17ß-E2) occur via classical nuclear receptors (ERα or ERß), while rapid E2 actions occur via synapse-localized ERα or ERß. Elevation or decrease of the E2 concentration changes rapidly the density and morphology of spines in CA1-CA3 neurons. ERα, but not ERß, drives this enhancement/suppression of spinogenesis. Kinase networks are involved downstream of ERα. The long-term depression but not the long-term potentiation is modulated rapidly by changes of E2 level. Determination of the E2 concentration in the hippocampus is enabled by mass-spectrometry in combination with derivatization methods. The E2 level in the hippocampus is as high as approx. 8 nM for the male and 0.5-2 nM for the female, which is much higher than that in circulation. Therefore, hippocampus-derived E2 plays a major role in modulation of synaptic plasticity. Many hippocampal slice experiments measure the restorative effects of E2 by supplementation of E2 to E2-depleted slices. Accordingly, isolated slice experiments can be used as in vitro models of in vivo estrogen replacement therapy for ovariectomized female animals with depleted circulating estrogen.


Brain Research | 2003

The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity

Mari Ogiue-Ikeda; Suguru Kawato; Shoogo Ueno

We investigated the effect of repetitive transcranial magnetic stimulation (rTMS) on long-term potentiation (LTP) in the rat hippocampus. Rats were magnetically stimulated at a rate of 1000 pulses/day for 7 days by a round coil, in which the peak magnetic fields at the center of the coil were 0.75 and 1.00 T. LTP enhancement was observed only in the 0.75-T rTMS group, while no change was observed in the 1.00-T rTMS group. These results suggest that the effect of rTMS on LTP depends on the stimulus intensity.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen ☆

Yuuki Ooishi; Suguru Kawato; Yasushi Hojo; Yusuke Hatanaka; Shimpei Higo; Gen Murakami; Yoshimasa Komatsuzaki; Mari Ogiue-Ikeda; Tetsuya Kimoto; Hideo Mukai

The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ). The long-term potentiation (LTP), induced by strong tetanus or theta-burst stimulation, is not further enhanced by E2 perfusion in adult rats. Interestingly, E2 perfusion can rescue corticosterone (stress hormone)-induced suppression of LTP. The long-term depression is modulated rapidly by E2 perfusion. Elevation of the E2 concentration changes rapidly the density and head structure of spines in neurons. ERα, but not ERβ, drives this enhancement of spinogenesis. Kinase networks are involved downstream of ERα. Testosterone (T) or dihydrotestosterone (DHT) also rapidly modulates spinogenesis. Newly developed Spiso-3D mathematical analysis is used to distinguish these complex effects by sex steroids and kinases. It has been doubted that the level of hippocampus-derived estrogen and androgen may not be high enough to modulate synaptic plasticity. Determination of the accurate concentration of E2, T or DHT in the hippocampus is enabled by mass-spectrometric analysis in combination with new steroid-derivatization methods. The E2 level in the hippocampus is approximately 8nM for the male and 0.5-2nM for the female, which is much higher than that in circulation. The level of T and DHT is also higher than that in circulation. Taken together, hippocampus-derived E2, T, and DHT play a major role in modulation of synaptic plasticity.


Neuroscience Letters | 2003

Control of orientation of rat Schwann cells using an 8-T static magnetic field.

Yawara Eguchi; Mari Ogiue-Ikeda; Shoogo Ueno

Schwann cells aid in neuronal regeneration in the peripheral nervous system via guiding the regrowth of axons. In this study, we investigated the magnetic orientation of Schwann cells, and of a mixture of Schwann cells and collagen, after an 8-tesla magnetic field exposure. We obtained cultured Schwann cells from dissected sciatic nerves of neonatal rats. After 60 h of magnetic field exposure, Schwann cells oriented parallel to the magnetic fields. In contrast, the mixture of Schwann cells and collagen, Schwann cells oriented in the direction perpendicular to the magnetic field after 2 h of magnetic field exposure. In this case, Schwann cells aligned along the collagen fiber oriented by magnetic fields. The magnetic control of Schwann cell alignment is useful in medical engineering applications such as nerve regeneration.


The Neuroscientist | 2007

Local Production of Sex Hormones and Their Modulation of Hippocampal Synaptic Plasticity

Hirotaka Ish; Tomokazu Tsurugizawa; Mari Ogiue-Ikeda; Makoto Asashima; Hideo Mukai; Gen Murakami; Yasushi Hojo; Tetsuya Kimoto; Suguru Kawato

It is believed that sex hormones are synthesized in the gonads and reach the brain via the blood circulation. In contrast with this view, the authors have demonstrated that sex hormones are also synthesized locally in the hippocampus and that these steroids act rapidly to modulate neuronal synaptic plasticity. The authors demonstrated that estrogens are locally synthesized from cholesterol through dehydroepiandrosterone and testosterone in adult hippocampal neurons. Significant expression of mRNA for P450(17α), P450arom, and other steroidogenic enzymes was demonstrated. Localization of P450(17α) and P450arom was observed in synapses of principal neurons. In contrast to the slow action of gonadal estradiol, hippocampal neuron-derived estradiol may act locally and rapidly within the neurons. For example, 1 to 10 nM estradiol rapidly enhances long-term depression (LTD). The density of thin spines is selectively increased within two hours upon application of estradiol in pyramidal neurons. Estrogen receptor ERα agonist has the same enhancing effect as estradiol on both LTD and spinogenesis. Localization of ERα in spines in addition to nuclei of principal neurons implies that synaptic ERα is responsible for rapid modulation of synaptic plasticity by endogenous estradiol. Activin A, a peptide sex hormone, may also play a role as a local endogenous modulator of synaptic plasticity. NEUROSCIENTIST 13(4):323—334, 2007. DOI: 10.1177/1073858407301396


Frontiers in Endocrinology | 2011

Hippocampal Synthesis of Sex Steroids and Corticosteroids: Essential for Modulation of Synaptic Plasticity

Yasushi Hojo; Shimpei Higo; Suguru Kawato; Yusuke Hatanaka; Yuuki Ooishi; Gen Murakami; Hirotaka Ishii; Yoshimasa Komatsuzaki; Mari Ogiue-Ikeda; Hideo Mukai; Tetsuya Kimoto

Sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. Accumulating evidence shows that hippocampal neurons synthesize both estrogen and androgen. Recently, we also revealed the hippocampal synthesis of corticosteroids. The accurate concentrations of these hippocampus-synthesized steroids are determined by liquid chromatography–tandem mass-spectrometry in combination with novel derivatization. The hippocampal levels of 17β-estradiol (E2), testosterone (T), dihydrotestosterone (DHT), and corticosterone (CORT), are 5–15 nM, and these levels are sufficient to modulate synaptic plasticity. Hippocampal E2 modulates memory-related synaptic plasticity not only slowly/genomically but also rapidly/non-genomically. Slow actions of E2 occur via classical nuclear receptors (ERα or ERβ), while rapid E2 actions occur via synapse-localized or extranuclear ERα or ERβ. Nanomolar concentrations of E2 change rapidly the density and morphology of spines in hippocampal neurons. ERα, but not ERβ, drives this enhancement/suppression of spinogenesis in adult animals. Nanomolar concentrations of androgens (T and DHT) and CORT also increase the spine density. Kinase networks are involved downstream of ERα and androgen receptor. Newly developed Spiso-3D mathematical analysis is useful to distinguish these complex effects by sex steroids and kinases. Significant advance has been achieved in investigations of rapid modulation by E2 of the long-term depression or the long-term potentiation.


Neuroscience Letters | 2005

Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats

Hirofumi Funamizu; Mari Ogiue-Ikeda; Hideo Mukai; Suguru Kawato; Shoogo Ueno

Repetitive transcranial magnetic stimulation (rTMS) offers potential benefit as a therapeutic treatment for neurological and psychiatric disorders. However, the mechanism underlying the therapeutic effects of rTMS is still unknown. In this study, we investigated the rescue effects of rTMS in the lesioned rats by administering the neurotoxin MPTP (l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine). The rats received rTMS (10 trains of 25 pulses/s for 8 s) 48 h after MPTP injection, and tyrosine hydroxylase (TH) and NeuN expressions were investigated in the substantia nigra. The functional observational battery-hunched posture score for the MPTP-rTMS group was significantly lower and the number of rearing events was higher compared with the MPTP-sham group, these behavioral parameters revert to control levels. These results suggest that rTMS treatment reactivates the dopaminergic system in lesion rats.

Collaboration


Dive into the Mari Ogiue-Ikeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge