Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mari Tada is active.

Publication


Featured researches published by Mari Tada.


Journal of Biological Chemistry | 2009

Isolation and characterization of patient-derived, toxic, high mass Amyloid β-protein (Aβ) assembly from Alzheimer disease brains

Akihiko Noguchi; Satoko Matsumura; Mari Dezawa; Mari Tada; Masako Yanazawa; Akane Ito; Manami Akioka; Satoru Kikuchi; Michio Sato; Shouji Ideno; Munehiro Noda; Atsushi Fukunari; Shin-ichi Muramatsu; Yutaka Itokazu; Kazuki Sato; Hitoshi Takahashi; David B. Teplow; Yo-ichi Nabeshima; Akiyoshi Kakita; Kazutomo Imahori; Minako Hoshi

Amyloid β-protein (Aβ) assemblies are thought to play primary roles in Alzheimer disease (AD). They are considered to acquire surface tertiary structures, not present in physiologic monomers, that are responsible for exerting toxicity, probably through abnormal interactions with their target(s). Therefore, Aβ assemblies having distinct surface tertiary structures should cause neurotoxicity through distinct mechanisms. Aiming to clarify the molecular basis of neuronal loss, which is a central phenotype in neurodegenerative diseases such as AD, we report here the selective immunoisolation of neurotoxic 10–15-nm spherical Aβ assemblies termed native amylospheroids (native ASPDs) from AD and dementia with Lewy bodies brains, using ASPD tertiary structure-dependent antibodies. In AD patients, the amount of native ASPDs was correlated with the pathologic severity of disease. Native ASPDs are anti-pan oligomer A11 antibody-negative, high mass (>100 kDa) assemblies that induce degeneration particularly of mature neurons, including those of human origin, in vitro. Importantly, their immunospecificity strongly suggests that native ASPDs have a distinct surface tertiary structure from other reported assemblies such as dimers, Aβ-derived diffusible ligands, and A11-positive assemblies. Only ASPD tertiary structure-dependent antibodies could block ASPD-induced neurodegeneration. ASPDs bind presynaptic target(s) on mature neurons and have a mode of toxicity different from those of other assemblies, which have been reported to exert their toxicity through binding postsynaptic targets and probably perturbing glutamatergic synaptic transmission. Thus, our findings indicate that native ASPDs with a distinct toxic surface induce neuronal loss through a different mechanism from other Aβ assemblies.


Movement Disorders | 2009

Cerebellar involvement in progressive supranuclear palsy: A clinicopathological study†

Masato Kanazawa; Takayoshi Shimohata; Yasuko Toyoshima; Mari Tada; Akiyoshi Kakita; Takashi Morita; Tetsutaro Ozawa; Hitoshi Takahashi; Masatoyo Nishizawa

The clinical heterogeneity of progressive supranuclear palsy (PSP), which is classified as classic Richardsons syndrome (RS) and PSP‐Parkinsonism (PSP‐P), has been previously discussed. We retrospectively analyzed 22 consecutive Japanese patients with pathologically proven PSP to investigate the clinicopathological heterogeneity. We investigated the clinical features both early in and at any time during the disease course. The pathological severities of neuronal loss with gliosis and tau pathology were also evaluated. On the basis of the clinical features, 10 patients were categorized as having RS, and 8 were categorized as having PSP‐P. Four patients presenting with cerebellar ataxia or cerebral cortical signs were categorized as having unclassifiable PSP. Among them, 3 developed cerebellar ataxia as the initial and principal symptom. Notably, tau‐positive inclusion bodies in Purkinje cells were significantly more frequently observed in the patients with cerebellar ataxia than in those without cerebellar ataxia. All the patients with cerebellar ataxia exhibited more neuronal loss with gliosis and higher densities of coiled bodies in the cerebellar dentate nucleus than those without cerebellar ataxia. This study confirms the wide spectrum of clinicopathological manifestations associated with PSP regardless of different ethnic origin, and demonstrates that PSP patients manifest cerebellar ataxia.


Neurology | 2014

Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS

Takuya Konno; Mari Tada; Akihide Koyama; Hiroaki Nozaki; Yasuo Harigaya; J. Nishimiya; Akiko Matsunaga; Nobuaki Yoshikura; Kenji Ishihara; Musashi Arakawa; A. Isami; Kenichi Okazaki; Hideaki Yokoo; Kyoko Itoh; Makoto Yoneda; Mitsuru Kawamura; Takashi Inuzuka; Hitoshi Takahashi; Masatoyo Nishizawa; Osamu Onodera; Akiyoshi Kakita; Takeshi Ikeuchi

Objective: To clarify the genetic, clinicopathologic, and neuroimaging characteristics of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) with the colony stimulating factor 1 receptor (CSF-1R) mutation. Methods: We performed molecular genetic analysis of CSF-1R in patients with HDLS. Detailed clinical and neuroimaging findings were retrospectively investigated. Five patients were examined neuropathologically. Results: We found 6 different CSF-1R mutations in 7 index patients from unrelated Japanese families. The CSF-1R mutations included 3 novel mutations and 1 known missense mutation at evolutionarily conserved amino acids, and 1 novel splice-site mutation. We identified a novel frameshift mutation. Reverse transcription PCR analysis revealed that the frameshift mutation causes nonsense-mediated mRNA decay by generating a premature stop codon, suggesting that haploinsufficiency of CSF-1R is sufficient to cause HDLS. Western blot analysis revealed that the expression level of CSF-1R in the brain from the patients was lower than from control subjects. The characteristic MRI findings were the involvement of the white matter and thinning of the corpus callosum with signal alteration, and sequential analysis revealed that the white matter lesions and cerebral atrophy relentlessly progressed with disease duration. Spotty calcifications in the white matter were frequently observed by CT. Neuropathologic analysis revealed that microglia in the brains of the patients demonstrated distinct morphology and distribution. Conclusions: These findings suggest that patients with HDLS, irrespective of mutation type in CSF-1R, show characteristic clinical and neuroimaging features, and that perturbation of CSF-1R signaling by haploinsufficiency may play a role in microglial dysfunction leading to the pathogenesis of HDLS.


Brain | 2009

Depletion of medullary serotonergic neurons in patients with multiple system atrophy who succumbed to sudden death

Mari Tada; Akiyoshi Kakita; Yasuko Toyoshima; Osamu Onodera; Tetsutaro Ozawa; Takashi Morita; Masatoyo Nishizawa; Hitoshi Takahashi

Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by prominent autonomic failure with ataxia and/or parkinsonism. The leading cause of death in MSA is sudden death. We have shown that the early development of autonomic failure is an independent risk factor for sudden death. The depletion of sympathetic preganglionic neurons in the spinal intermediolateral cell column (IML) and its afferent medullary catecholaminergic and serotonergic neurons has been proposed to be partly responsible for autonomic failure in MSA. In this study, we investigated whether the depletion of neurons in any of these autonomic neuron groups contributes to sudden death in MSA. Out of 52 autopsy-proven patients with MSA, we selected 12 individuals who had died within 3.5 years after disease onset to define the accurate levels of slices and identify early neuropathological changes of autonomic nuclei in MSA. Four patients succumbed to sudden death and eight patients died through established causes. Serial 10 mum sections were obtained from the 8th segment of the thoracic cord and the rostral medulla oblongata. Sections from the medulla oblongata were immunostained for thyrosine hydroxylase and tryptophan hydroxylase. The total cell number in the five sections was computed for comparison. Compared with the control, the MSA group showed a marked depletion of neurons in the IML (38.0 +/- 7.1 versus 75.2 +/- 7.6 cells, P < 0.001), thyrosine hydroxylase-immunoreactive neurons in the ventrolateral medulla (VLM) (17.4 +/- 5.1 versus 72.8 +/- 13.6 cells, P < 0.01) and tryptophan hydroxylase-immunoreactive neurons in the VLM (15.6 +/- 9.2 versus 60.8 +/- 17.0 cells, P < 0.01), nucleus raphe obscurus (19.3 +/- 4.4 versus 75.3 +/- 8.6 cells, P < 0.001), nucleus raphe pallidus (2.1 +/- 2.7 versus 9.0 +/- 3.4 cells, P < 0.03), and arcuate nucleus (0.4 +/- 0.8 versus 2.3 +/- 1.5 cells, P < 0.05). Moreover, in patients who succumbed to sudden death, when compared with patients who had established causes of death, we found a marked depletion of tryptophan hydroxylase-immunoreactive neurons in the VLM (7.3 +/- 3.5 versus 21.8 +/- 6.5 cells, P < 0.02) and nucleus raphe obscurus (15.0 +/- 2.0 versus 22.5 +/- 2.1 cells, P < 0.01). The results indicate that the spinal IML and medullary catecholaminergic and serotonergic systems are involved even in the early stages of MSA, and the dysfunction of the medullary serotonergic system regulating cardiovascular and respiratory systems could be responsible for sudden death in patients with MSA.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly

Takayuki Ohnishi; Masako Yanazawa; Tomoya Sasahara; Yasuki Kitamura; Hidekazu Hiroaki; Yugo Fukazawa; Isao Kii; Takashi Nishiyama; Akiyoshi Kakita; Hiroyuki Takeda; Akihide Takeuchi; Yoshie Arai; Akane Ito; Hitomi Komura; Hajime Hirao; Kaori Satomura; Masafumi Inoue; Shin-ichi Muramatsu; Ko Matsui; Mari Tada; Michio Sato; Eri Saijo; Yoshiki Shigemitsu; Satoko Sakai; Yoshitaka Umetsu; Natsuko Goda; Naomi Takino; Hitoshi Takahashi; Masatoshi Hagiwara; Tatsuya Sawasaki

Significance Alzheimer’s disease (AD) involves neuron dysfunction and loss. This brain damage is thought to be caused by a small protein, the amyloid β-protein (Aβ), which forms aggregates that are neurotoxic. This neurotoxicity has been explained by multiple mechanisms. We reveal here a new neurotoxic mechanism that involves the interaction between patient-derived Aβ assemblies, termed amylospheroids, and the neuron-specific Na+/K+-ATPase α3 subunit. This interaction causes neurodegeneration through pre-synaptic calcium overload, which explains earlier observations that such neuronal hyperactivation is an early indicator of AD-related neurodegeneration. Importantly, amylospheroid concentrations correlate with disease severity and progression in AD patients. Amylospheroid:neuron-specific Na+/K+-ATPase α3 subunit interactions may be a useful therapeutic target for AD. Neurodegeneration correlates with Alzheimer’s disease (AD) symptoms, but the molecular identities of pathogenic amyloid β-protein (Aβ) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10- to 15-nm spherical Aβ oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuron-specific Na+/K+-ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aβ–derived “thorns” responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn879 and Trp880 is essential for ASPD–NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD–NAKα3 interaction.


Journal of the Neurological Sciences | 2006

Long-term therapeutic efficacy and safety of low-dose tacrolimus (FK506) for myasthenia gravis

Masayoshi Tada; Takayoshi Shimohata; Mari Tada; Mutsuo Oyake; Shuichi Igarashi; Osamu Onodera; Satoshi Naruse; Keiko Tanaka; Shoji Tsuji; Masatoyo Nishizawa

OBJECTIVE To elucidate the long-term therapeutic efficacy and safety of low-dose FK506 (tacrolimus) in patients with myasthenia gravis (MG). PATIENTS AND METHODS We treated nine patients with MG (all women: age range: 35-83 years (mean: 51.1 years); MGFA classification: 4 type IIa, 4 type IIb, and 1 type IVb patients) with FK506 for more than 24 months (observation period: 24-46 months). All the patients had undergone extended thymectomy before FK506 treatment; two patients (22.2%) had noninvasive thymoma and six (66.7%) had thymic hyperplasia. We evaluated total Quantitative MG (Q-MG) score, anti-acetylcholine receptor (AChR) antibody titer in the blood, interleukin 2 (IL-2) production in peripheral blood mononuclear cells (PBMCs), administration dosage of prednisolone (PSL), and adverse effects of FK506. RESULTS A reduction in steroid dosage of 50% without worsening of the symptoms was observed 1 year after FK506 administration in three out of six steroid-dependent MG patients (50.0%). The total Q-MG scores (range: 0-39 points) at 6 months and 1 year after FK506 administration improved by 3 points or more in six (66.7%) and seven (77.8%) out of nine patients, respectively. The efficacy of FK506 was maintained for more than 2 years. Although adverse effects were observed in three patients (33.3%), these were not serious. CONCLUSIONS Our study indicates that low-dose FK506 treatment may be efficacious not only in controlling intractable myasthenic symptoms, but also in reducing steroid dosage, and that FK506 is safe as an adjunctive drug to PSL for MG treatment for a maximum of 3 years.


Movement Disorders | 2014

Pathology and sensitivity of current clinical criteria in corticobasal syndrome.

Haruka Ouchi; Yasuko Toyoshima; Mari Tada; Mutsuo Oyake; Izumi Aida; Itsuro Tomita; Akira Satoh; Mitsuhiro Tsujihata; Hitoshi Takahashi; Masatoyo Nishizawa; Takayoshi Shimohata

The aim of this study was to investigate corticobasal syndrome with respect to underlying pathologies, the ability of current clinical criteria to detect early stages of disease, and symptoms and signs predicting background pathologies. We retrospectively analyzed the clinicopathological findings from patients with corticobasal syndrome. We also analyzed whether those findings fulfilled the diagnostic criteria for corticobasal degeneration (CBD). Finally, we investigated characteristic clinical features that are specific to each background pathology. Of 10 consecutive autopsied patients who had corticobasal syndrome (mean age ± standard deviation, 67.9 ± 9.3 years; male:female ratio, 6:4), three had corticobasal degeneration pathology, three had progressive supranuclear palsy, three had Alzheimers disease, and one had atypical four‐repeat tauopathy. Nine patients fulfilled Mayo criteria, and all 10 patients fulfilled modified Cambridge criteria at the later stage, but only two patients fulfilled either clinical criteria within 2 years of disease onset. Five patients fulfilled the clinical criteria for possible CBD (p‐CBD), and one patient fulfilled the clinical research criteria for probable sporadic CBD (cr‐CBD) at the later stage. Only two patients fulfilled the criteria for either p‐CBD or cr‐CBD within 2 years of disease onset. Although we could not find any predictive characteristic clinical features that were specific to CBD pathology, only patients with progressive supranuclear palsy developed apraxia of eyelid opening and cerebellar ataxia. Myoclonus and memory impairment, especially if they appear at an early stage of the disease, may predict Alzheimers disease pathology. Sensitivity of the available clinical criteria for corticobasal syndrome was poor within 2 years of disease onset.


Journal of Parkinson's disease | 2012

Difference in MSA Phenotype Distribution Between Populations: Genetics or Environment?

Tetsutaro Ozawa; Tamas Revesz; Dominic C. Paviour; Andrew J. Lees; Niall Quinn; Mari Tada; Akiyoshi Kakita; Osamu Onodera; Koichi Wakabayashi; Hitoshi Takahashi; Masatoyo Nishizawa; Janice L. Holton

The reasons for the differences in emphasis on striatonigral or olivopontocerebellar involvement in multiple system atrophy (MSA) remain to be determined. Semi-quantitative pathological analyses carried out in the United Kingdom and Japan demonstrated that olivopontocerebellar-predominant pathology was more frequent in Japanese MSA than British MSA. This observation provides evidence for a difference in phenotype distribution between British and Japanese patients with definite MSA. Studies of the natural history and epidemiology of MSA carried out in various populations have revealed that the relative prevalences of clinical subtypes of MSA probably differ among populations; the majority of MSA patients diagnosed in Europe have predominant parkinsonism (MSA-P), while the majority of MSA patients diagnosed in Asia have predominant cerebellar ataxia (MSA-C). Although potential drawbacks to the published frequencies of clinical subtypes and pathological subtypes should be considered because of selection biases, the difference demonstrated in pathological subtype is also consistent with the differences in clinical subtype of MSA demonstrated between Europe and Asia. Modest alterations in susceptibility factors may contribute to the difference in MSA phenotype distribution between populations. Synergistic interactions between genetic risk variants and environmental toxins responsible for parkinsonism or cerebellar dysfunction should therefore be explored. Further investigations are needed to determine the environmental, genetic, and epigenetic factors that account for the differences in clinicopathological phenotype of MSA among different populations.


Acta neuropathologica communications | 2014

Relocation of p25α/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy

Kiyobumi Ota; Masato Obayashi; Kokoro Ozaki; Shizuko Ichinose; Akiyoshi Kakita; Mari Tada; Hitoshi Takahashi; Noboru Ando; Yoshinobu Eishi; Hidehiro Mizusawa; Kinya Ishikawa

Abstractp25α/tubulin polymerization promoting protein (TPPP) is an oligodendroglial protein that plays crucial roles including myelination, and the stabilization of microtubules. In multiple system atrophy (MSA), TPPP is suggested to relocate from the myelin sheath to the oligodendroglial cell body, before the formation of glial cytoplasmic inclusions (GCIs), the pathologic hallmark of MSA. However, much is left unknown about the re-distribution of TPPP in MSA. We generated new antibodies against the N- and C-terminus of TPPP, and analyzed control and MSA brains, including the brain of a familial MSA patient carrying homozygous mutations in the coenzyme Q2 gene (COQ2). In control brain tissues, TPPP was localized not only in the cytoplasmic component of the oligodendroglia including perinuclear cytoplasm and peripheral processes in the white matter, but also in the nucleus of a fraction (62.4%) of oligodendroglial cells. Immunoelectron microscopic analysis showed TPPP in the nucleus and mitochondrial membrane of normal oligodendroglia, while western blot also supported its nuclear and mitochondrial existence. In MSA, the prevalence of nuclear TPPP was 48.6% in the oligodendroglia lacking GCIs, whereas it was further decreased to 19.6% in the oligodendroglia with phosphorylated α-synuclein (pα-syn)-positive GCIs, both showing a significant decrease compared to controls (62.4%). In contrast, TPPP accumulated in the perinuclear cytoplasm where mitochondrial membrane (TOM20 and cytochrome C) and fission (DRP1) proteins were often immunoreactive. We conclude that in MSA-oligodendroglia, TPPP is reduced, not only in the peripheral cytoplasm, but also in the nucleus and relocated to the perinuclear cytoplasm.


Acta neuropathologica communications | 2016

Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: Evidence for clinico-pathologic subtypes

Ryoko Takeuchi; Mari Tada; Atsushi Shiga; Yasuko Toyoshima; Takuya Konno; Tomoe Sato; Hiroaki Nozaki; Taisuke Kato; Masao Horie; Hiroshi Shimizu; Hirohide Takebayashi; Osamu Onodera; Masatoyo Nishizawa; Akiyoshi Kakita; Hitoshi Takahashi

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are types of major TDP-43 (43-kDa TAR DNA-binding protein) proteinopathy. Cortical TDP-43 pathology has been analyzed in detail in cases of FTLD-TDP, but is still unclear in cases of ALS. We attempted to clarify the cortical and subcortical TDP-43 pathology in Japanese cases of sporadic ALS (n = 96) using an antibody specific to phosphorylated TDP-43 (pTDP-43). The cases were divided into two groups: those without pTDP-43-positive neuronal cytoplasmic inclusions in the hippocampal dentate granule cells (Type 1, n = 63), and those with such inclusions (Type 2, n = 33). Furthermore, the Type 2 cases were divided into two subgroups based on semi-quantitative estimation of pTDP-43-positive dystrophic neurites (DNs) in the temporal neocortex: Type 2a (accompanied by no or few DNs, n = 22) and Type 2b (accompanied by abundant DNs, n = 11). Clinico-pathologic analysis revealed that cognitive impairment was a feature in patients with Type 2a and Type 2b, but not in those with Type 1, and that importantly, Type 2b is a distinct subtype characterized by a poor prognosis despite the less severe loss of lower motor neurons, the unusual subcortical dendrospinal pTDP-43 pathology, and more prominent glial involvement in cortical pTDP-43 pathology than other two groups. Considering the patient survival time and severity of motor neuron loss in each group, transition from Type 1 to Type 2, or from Type 2a to Type 2b during the disease course appeared unlikely. Therefore, each of these three groups was regarded as an independent subtype.

Collaboration


Dive into the Mari Tada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge