María A. Alava
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María A. Alava.
Journal of Immunology | 2001
Inmaculada Monleón; María José Martínez-Lorenzo; L.V. Monteagudo; Pilar Lasierra; Marta Taulés; María Iturralde; Andrés Piñeiro; Luis Larrad; María A. Alava; Javier Naval; Alberto Anel
Preformed Fas ligand (FasL) and APO2 ligand (APO2L)/TNF-related apoptosis-inducing ligand (TRAIL) are stored in the cytoplasm of the human Jurkat T cell line and of normal human T cell blasts. The rapid release of these molecules in their bioactive form is involved in activation-induced cell death. In this study, we show by confocal microscopy that FasL and APO2L/TRAIL are mainly localized in lysosomal-like compartments in these cells. We show also by immunoelectron microscopy that FasL and APO2L/TRAIL are stored inside cytoplasmic compartments ∼500 nm in diameter, with characteristics of multivesicular bodies. Most of these compartments share FasL and APO2L/TRAIL, although exclusive APO2L/TRAIL labeling can be also observed in separate compartments. Upon PHA activation, the mobilization of these compartments toward the plasma membrane is evident, resulting in the secretion of the internal microvesicles loaded with FasL and APO2L/TRAIL. In the case of activation with anti-CD59 mAb, the secretion of microvesicles labeled preferentially with APO2L/TRAIL predominates. These data provide the basis of a new and efficient mechanism for the rapid induction of autocrine or paracrine cell death during immune regulation and could modify the interpretation of the role of FasL and APO2L/TRAIL as effector mechanisms in physiological and pathological situations.
Comparative Biochemistry and Physiology B | 1998
Peter M. H. Heegaard; Joan Klausen; Jens Nielsen; Nieves González-Ramón; Matilde Piñeiro; Fermín Lampreave; María A. Alava
In an experimental infection model mimicking acute Actinobacillus pleuropneumoniae (Ap) infection in swine (Sus scrofa) by aerosol inoculation, the development of a number of typical clinical signs was accompanied by a prototypic acute phase reaction encompassing fever and an acute phase protein response peaking at around 2 days after infection. Haptoglobin, C-reactive protein (CRP), and major acute phase protein (MAP) responded with large increases in serum levels, preceding the development of specific antibodies by 4-5 days. Serum amyloid A protein (SAA) was also strongly induced. The increase, kinetics of induction and normalization were different between these proteins. It is concluded that experimental Ap-infection by the aerosol route induces a typical acute phase reaction in the pig, and that pig Hp, CRP, MAP, and SAA are major acute phase reactants. These findings indicate the possibility of using one or more of these reactants for the nonspecific surveillance of pig health status.
European Journal of Immunology | 1998
María José Martínez-Lorenzo; María A. Alava; Susana Gamen; K. Jin Kim; Anan Chuntharapai; Andrés Piñeiro; Javier Naval; Alberto Anel
The interaction of Fas with Fas ligand (FasL) mediates activation‐induced cell death (AICD) of T hybridomas and of mature T lymphocytes. The TNF/TNF receptor system also plays a significant role in AICD of mature T cells and in the maintenance of peripheral tolerance. We previously demonstrated that in human Jurkat leukemia cells, AICD is triggered mainly by the rapid release of preformed FasL upon TCR stimulation. In the present work, we show that the cytotoxic cytokine APO2 ligand (APO2L; also known as TRAIL) is constitutively expressed as an intracytoplasmic protein in Jurkat T cells and derived sublines. APO2L is also detected in fresh human peripheral blood mononuclear cells (PBMC) from a significant number of donors, and the amount of both FasL and APO2L substantially increases upon blast generation. A neutralizing anti‐APO2L monoclonal antibody (mAb) partially suppresses the cytotoxicity induced by supernatants of phytohemagglutinin (PHA)‐prestimulated Jurkat or human PBMC on non‐activated Jurkat cells, indicating that APO2L is released by these cells and contributes to AICD. A combination of neutralizing anti‐APO2L and anti‐Fas mAb blocks around 60 % of the toxicity associated with supernatants from PHA‐activated human PBMC. These results show that FasL and APO2L account for the majority of cytotoxic activity released during AICD, and suggest that additional uncharacterized factors may also contribute to this process.
FEBS Letters | 1997
Susana Gamen; Alberto Anel; Pilar Lasierra; María A. Alava; María José Martínez-Lorenzo; Andrés Piñeiro; Javier Naval
It has recently been proposed that doxorubicin (DOX) can induce apoptosis in human T‐leukemia cells via the Fas/FasL system in an autocrine/paracrine way. We show here that treatment of Jurkat cells with either anti‐Fas antibodies, anthracyclin drugs or actinomycin D induces the activation of CPP32 (caspase‐3) and apoptosis. However, DOX treatment did not induce the expression of membrane FasL or the release of soluble FasL and co‐incubation with blocking anti‐Fas antibodies prevented Fas‐induced but not DOX‐induced apoptosis. All the morphological and biochemical signs of apoptosis induced by anti‐Fas or DOX can be prevented by Z‐VAD‐fmk, a general caspase inhibitor. DEVD‐cho, a specific inhibitor of CPP32‐like caspases which completely blocks Fas‐mediated apoptosis, prevented drug‐induced nuclear apoptosis but not cell death. We conclude that: (i) DOX‐induced apoptosis in human T‐leukemia/lymphoma is Fas‐independent and (ii) caspase‐3 is responsible of DOX‐induced nuclear apoptosis but other Z‐VAD‐sensitive caspases are implicated in cell death.
Immunology | 1996
María José Martínez-Lorenzo; María A. Alava; Alberto Anel; Andrés Piñeiro; Javier Naval
Interaction of Fas/APO‐1 (CD95) and its ligand (FasL) plays an important role in the activation‐induced cell death (AICD) of T lymphocytes. In the present work, the contribution of soluble FasL to AICD of the human T‐cell line Jurkat has been studied. Jurkat cells prestimulated with phytohaemagglutinin (PHA) induced the death of non‐activated Jurkat cells, and also of L1210Fas, but not that of Fas‐negative L1210 cells. Culture supernatants from prestimulated Jurkat cells were highly toxic to their non‐activated counterparts. Time–course analysis revealed that PHA‐stimulated Jurkat cells quickly release (less than 15 min) to the medium a toxic molecule following a biphasic pattern, with maximal cytotoxic activities at 1 hr and 7 hr after stimulation. The cytotoxic effect of those supernatants was prevented by the addition of a blocking anti‐Fas monoclonal antibody, suggesting that PHA‐stimulated Jurkat cells exert Fas‐based cytotoxicity mainly through the release of soluble FasL. The constitutive intracellular expression of FasL in non‐activated Jurkat cells and its release as a consequence of PHA activation were detected by immunostaining and immunoblotting using an anti‐FasL antibody. These data indicate that, at least in Jurkat cells, AICD is mainly mediated by the rapid release of preformed FasL in soluble form upon stimulation.
FEBS Letters | 1995
Nieves González-Ramón; María A. Alava; Sarsa Ja; Matilde Piñeiro; A Escartı́n; Garcia-Gil A; Fermín Lampreave; Andrés Piñeiro
A major acute phase protein (pig‐MAP) has been isolated from the sera of pigs after turpentine injection. The protein is the pig counterpart of a recently cloned human serum protein denominated PK‐120, which is a putative substrate for kallikrein [Nishimura et al., 1995 FEBS Lett. 357, 207–211]. The protein exists in other mammalian species and it is also an acute phase protein, at least in the rat. Pig‐MAP shows homology, as PK‐120, with the heavy chain 2 (HC‐2) of the inter‐α‐trypsin inhibitor superfamily but does not possess trypsin inhibitory activity.
Infection and Immunity | 2004
Matilde Piñeiro; M. Andrés; M. Iturralde; S. Carmona; J. Hirvonen; S. Pyörälä; Peter M. H. Heegaard; Kirsten Tjørnehøj; Fermín Lampreave; A. Piñeiro; María A. Alava
ABSTRACT We have isolated from calf serum a protein with an apparent Mr of 120,000. The protein was detected by using antibodies against major acute-phase protein in pigs with acute inflammation. The amino acid sequence of an internal fragment revealed that this protein is the bovine counterpart of ITIH4, the heavy chain 4 of the inter-alpha-trypsin inhibitor family. The response of this protein in the sera was determined for animals during experimental bacterial and viral infections. In the bacterial model, animals were inoculated with a mixture of Actinomyces pyogenes, Fusobacterium necrophorum, and Peptostreptococcus indolicus to induce an acute-phase reaction. All animals developed moderate to severe clinical mastitis and exhibited remarkable increases in ITIH4 concentration in serum (from 3 to 12 times the initial values, peaking at 48 to 72 h after infection) that correlated with the severity of the disease. Animals with experimental infections with bovine respiratory syncytial virus (BRSV) also showed increases in ITIH4 concentration (from two- to fivefold), which peaked at around 7 to 8 days after inoculation. Generally, no response was seen after a second infection of the same animals with the virus. Because of the significant induction of the protein in the animals in the mastitis and BRSV infection models, we can conclude that ITIH4 is a new positive acute-phase protein in cattle.
Biochimica et Biophysica Acta | 1996
Isabel Marzo; María A. Alava; Andrés Piñeiro; Javier Naval
It has been proposed that synthesis of docosahexaenoic acid (22:6(n-3) in rat hepatocytes occurs by a route independent of delta 4-desaturase, which involves delta 6-desaturation and retroconversion (Voss A., Reinhart M., Sankarappa S. and Sprecher H. (1991) J. Biol. Chem. 266, 19995-20000). However, most cells exhibit these enzymatic activities and nevertheless synthesize low to undectectable amounts of 22:6(n-3). Moreover, there are few data on the occurrence of this pathway in human cells. In the present work, we have analysed the biosynthetic pathway of 22:6(n-3) in human Y-79 retinoblastoma and Jurkat T-cells. Y-79 cells were supplemented with 18:3(n-3) and 20:5(n-3) or incubated with [1-14C]18:3(n-3) and [1-14C]20:5(n-3) and lipids analysed by argentation TLC, reverse-phase TLC and GLC-mass spectrometry. Pulse-chase experiments revealed that synthesis of 22:6(n-3) from 20:5(n-3) in Y-79 cells occurred through two successive elongations, followed by a delta 6-desaturation of 24:5(n-3) to 24:6(n-3) and retroconversion to 22:6(n-3). Incubation of Y-79 cells with [1-14C]18:3(n-3) in medium containing 50 microM trans-9,12-18:2, a potent inhibitor of delta 6-desaturase, caused a reduction of 22:6(n-3) synthesis mainly by interfering with the desaturation of 18:3(n-3). However, when [1-14C]20:5(n-3) was used as precursor, synthesis of 22:6(n-3) was depressed to a lesser extent and mainly by reduction of 24:6(n-3) retroconversion. Neuronal differentiation of Y-79 cells caused a great increase in delta 6-desaturase activity on 18:3(n-3), though the amount of 22:6(n-3) synthesized did not change or diminish, suggesting the existence of a particular delta 6-desaturase involved in the synthesis of 22:6(n-3). The existence of a distinctive delta 6-desaturase activity could also explain why Jurkat cells growing in serum-free medium showed a near 3-fold increase in the synthesis of pentaenes from 18:3(n-3) and, at the same time, a large decrease in the synthesis of 22:6(n-3). The verification of the involvement of two delta 6-desaturase activities in 22:6(n-3) synthesis would have important implications for the formulation of the nutritional requirements of this fatty acid during development.
Biochemical Journal | 2007
Pedro Iñarrea; Hadi Moini; Derick Han; Daniel Rettori; Ignacio Aguiló; María A. Alava; María Iturralde; Enrique Cadenas
IMS (intermembrane space) SOD1 (Cu/Zn-superoxide dismutase) is inactive in isolated intact rat liver mitochondria and is activated following oxidative modification of its critical thiol groups. The present study aimed to identify biochemical pathways implicated in the regulation of IMS SOD1 activity and to assess the impact of its functional state on key mitochondrial events. Exogenous H2O2 (5 microM) activated SOD1 in intact mitochondria. However, neither H2O2 alone nor H2O2 in the presence of mitochondrial peroxiredoxin III activated SOD1, which was purified from mitochondria and subsequently reduced by dithiothreitol to an inactive state. The reduced enzyme was activated following incubation with the superoxide generating system, xanthine and xanthine oxidase. In intact mitochondria, the extent and duration of SOD1 activation was inversely correlated with mitochondrial superoxide production. The presence of TxrR-1 (thioredoxin reductase-1) was demonstrated in the mitochondrial IMS by Western blotting. Inhibitors of TxrR-1, CDNB (1-chloro-2,4-dinitrobenzene) or auranofin, prolonged the duration of H2O2-induced SOD1 activity in intact mitochondria. TxrR-1 inactivated SOD1 purified from mitochondria in an active oxidized state. Activation of IMS SOD1 by exogenous H2O2 delayed CaCl2-induced loss of transmembrane potential, decreased cytochrome c release and markedly prevented superoxide-induced loss of aconitase activity in intact mitochondria respiring at state-3. These findings suggest that H2O2, superoxide and TxrR-1 regulate IMS SOD1 activity reversibly, and that the active enzyme is implicated in protecting vital mitochondrial functions.
International Journal of Cancer | 1998
María José Martínez-Lorenzo; Susana Gamen; Jaime Etxeberria; Pilar Lasierra; Luis Larrad; Andrés Piñeiro; Alberto Anel; Javier Naval; María A. Alava
Apoptosis induced by effector cells of the immune system or by cytotoxic drugs is a main mechanism mediating the prevention or elimination of tumoral cells. For instance, the human T‐cell leukemia Jurkat is sensitive to Fas‐induced apoptosis and to activation‐induced cell death (AICD), and the promonocytic leukemia U937 is sensitive to Fas‐ and TNF‐induced apoptosis. In this work, we have analyzed the mechanisms of resistance to physiological or pharmacological apoptosis in human leukemia by generating highly proliferative (hp) sub‐lines derived from Jurkat and U937 cells. These hp sub‐lines were resistant to Fas‐ and TNF‐induced apoptosis, as well as to AICD. This was due to the complete loss of Fas and TNFR surface expression and, in the case of Jurkat‐derived sub‐lines, also of CD3, CD2 and CD59 molecules. The sub‐lines also completely lacked the expression of the apoptotic protease CPP32, present in parental cells. Moreover, these sub‐lines were no longer sensitive to doxorubicin‐induced apoptosis, which was efficiently blocked by the general caspase inhibitor Z‐VAD‐fmk in the parental cell lines. These data suggest a molecular mechanism for the development of resistance of leukemic cells to physiological and pharmacological apoptosis inducers, giving rise to highly proliferative tumoral phenotypes. These results also indicate that Fas and CPP32 could be useful prognostic markers for the progression and/or therapy outcome of human leukemias. Int. J. Cancer 75:473–481, 1998.