Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria A. Musarella is active.

Publication


Featured researches published by Maria A. Musarella.


Nature Genetics | 1998

Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness

N. Torben Bech-Hansen; Margaret J. Naylor; Tracy A. Maybaum; William G. Pearce; Ben F. Koop; Gerald A. Fishman; Marilyn B. Mets; Maria A. Musarella; Kym M. Boycott

X-linked congenital stationary night blindness (CSNB) is a recessive non-progressive retinal disorder characterized by night blindness, decreased visual acuity, myopia, nystagmus and strabismus. Two distinct clinical entities of X-linked CSNB have been proposed. Patients with complete CSNB show moderate to severe myopia, undetectable rod function and a normal cone response, whereas patients with incomplete CSNB show moderate myopia to hyperopia and subnormal but measurable rod and cone function. The electrophysiological and psychophysical features of these clinical entities suggest a defect in retinal neurotransmission. The apparent clinical heterogeneity in X-linked CSNB reflects the recently described genetic heterogeneity in which the locus for complete CSNB (CSNB1) was mapped to Xp11.4, and the locus for incomplete CSNB (CSNB2) was refined within Xp11.23 (ref. 5). A novel retina-specific gene mapping to the CSNB2 minimal region was characterized and found to have similarity to voltage-gated L-type calcium channel α1-subunit genes. Mutation analysis of this new α1-subunit gene, CACNA1F , in 20 families with incomplete CSNB revealed six different mutations that are all predicted to cause premature protein truncation. These findings establish that loss-of-function mutations in CACNA1F cause incomplete CSNB, making this disorder an example of a human channelopathy of the retina.


Nature Genetics | 2000

Mutations in MKKS cause Bardet-Biedl syndrome

Anne Slavotinek; Edwin M. Stone; Kirk Mykytyn; John R. Heckenlively; Jane Green; Elise Héon; Maria A. Musarella; Patrick S. Parfrey; Val C. Sheffield; Leslie G. Biesecker

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder with locus heterogeneity. None of the ‘responsible’ genes have previously been identified. Some BBS cases (approximately 10%) remain unassigned to the five previously mapped loci. McKusick-Kaufma syndrome (MKS) includes hydrometrocolpos, postaxial polydactyly and congenital heart disease, and is also inherited in an autosomal recessive manner. We ascertained 34 unrelated probands with classic features of BBS including retinitis pigmentosa (RP), obesity and polydactyly. The probands were from families unsuitable for linkage because of family size. We found MKKS mutations in four typical BBS probands (Table 1). The first is a 13-year-old Hispanic girl with severe RP, PAP, mental retardation and obesity (BMI >40). She was a compound heterozygote for a missense (1042G→A, G52D) and a nonsense (1679T→A, Y264stop) mutation in exon 3. Cloning and sequencing of the separate alleles confirmed that the mutations were present in trans. A second BBS proband (from Newfoundland), born to consanguineous parents, was homozygous for two deletions (1316delC and 1324-1326delGTA) in exon 3, predicting a frameshift. An affected brother was also homozygous for the deletions, whereas an unaffected sibling had two normal copies of MKKS. Both the proband and her affected brother had RP, PAP, mild mental retardation, morbid obesity (BMI >50 and 37, respectively), lobulated kidneys with prominent calyces and diabetes mellitus (diagnosed at ages 33 and 30, respectively). A deceased sister (DNA unavailable) had similar phenotypic features (RP with blindness by age 13, BMI >45, abnormal glucose tolerance test and IQ=64, vaginal atresia and syndactyly of both feet). Both parents and the maternal grandfather were heterozygous for the deletions. Genotyping with markers from the MKKS region confirmed homozygosity at 20p12 in both affected individuals.


Genomics | 1990

Multipoint linkage analysis and heterogeneity testing in 20 X-linked retinitis pigmentosa families.

Maria A. Musarella; L. Anson-Cartwright; Suzanne M. Leal; L.D. Gilbert; Ronald G. Worton; G.A. Fishman; Jurg Ott

Using multipoint linkage analysis in 20 families segregating for X-linked retinitis pigmentosa (XLRP), the lod scores on a map of eight RFLP loci were obtained. Our results indicate that under the hypothesis of homogeneity the maximal multipoint lod score supports one disease locus located slightly distal to OTC at Xp21.1. Heterogeneity testing for two XLRP loci suggested that a second XLRP locus may be located 8.5 cM proximal to DXS28 at Xp21.3. Further heterogeneity testing for three disease loci failed to detect a third XLRP locus proximal to DXS7 in any of our 20 XLRP families.


American Journal of Human Genetics | 1997

Spectrum of mutations in the RPGR gene that are identified in 20% of families with X-linked retinitis pigmentosa.

Monika Buraczynska; Weiping Wu; Ricardo Fujita; Kinga Buraczynska; Ellen Phelps; Sten Andréasson; Jean Bennett; David G. Birch; Gerald A. Fishman; Dennis R. Hoffman; George Inana; Samuel G. Jacobson; Maria A. Musarella; Paul A. Sieving; Anand Swaroop

The RPGR (retinitis pigmentosa GTPase regulator) gene for RP3, the most frequent genetic subtype of X-linked retinitis pigmentosa (XLRP), has been shown to be mutated in 10%-15% of European XLRP patients. We have examined the RPGR gene for mutations in a cohort of 80 affected males from apparently unrelated XLRP families, by direct sequencing of the PCR-amplified products from the genomic DNA. Fifteen different putative disease-causing mutations were identified in 17 of the 80 families; these include four nonsense mutations, one missense mutation, six microdeletions, and four intronic-sequence substitutions resulting in splice defects. Most of the mutations were detected in the conserved N-terminal region of the RPGR protein, containing tandem repeats homologous to those present in the RCC-1 protein (a guanine nucleotide-exchange factor for Ran-GTPase). Our results indicate that mutations either in as yet uncharacterized sequences of the RPGR gene or in another gene located in its vicinity may be a more frequent cause of XLRP. The reported studies will be beneficial in establishing genotype-phenotype correlations and should lead to further investigations seeking to understand the mechanism of disease pathogenesis.


Survey of Ophthalmology | 1992

Gene mapping of ocular diseases

Maria A. Musarella

Increasing awareness of the role of genetic factors in the causation of many human eye diseases has made ocular genetics one of the fastest growing areas of ophthalmology. The objective of this paper is to present the basic principles of gene mapping and their application to ophthalmology. The techniques used to map the genome are reviewed with emphasis placed on molecular genetics. The advances in this area have already provided the major impetus to the areas of diagnosis and prevention of some genetic eye disorders. Tables are presented that list the autosomal, X-linked and mitochondrial assignment of eye genes and disorders with ocular involvement.


American Journal of Human Genetics | 1998

OA1 Mutations and Deletions in X-Linked Ocular Albinism

Rhonda E. Schnur; Mei Gao; Penelope A. Wick; Margaret Keller; Paul J. Benke; Matthew S. Edwards; Arthur Grix; Athel Hockey; Jack H. Jung; Kenneth K. Kidd; Mildred L. Kistenmacher; Alex V. Levin; Richard Alan Lewis; Maria A. Musarella; Rod W. Nowakowski; Seth J. Orlow; Roberta S. Pagon; De-Ann M. Pillers; Hope H. Punnett; Graham E. Quinn; Kamer Tezcan; Joseph Wagstaff; Richard G. Weleber

X-linked ocular albinism (OA1), Nettleship-Falls type, is characterized by decreased ocular pigmentation, foveal hypoplasia, nystagmus, photodysphoria, and reduced visual acuity. Affected males usually demonstrate melanin macroglobules on skin biopsy. We now report results of deletion and mutation screening of the full-length OA1 gene in 29 unrelated North American and Australian X-linked ocular albinism (OA) probands, including five with additional, nonocular phenotypic abnormalities (Schnur et al. 1994). We detected 13 intragenic gene deletions, including 3 of exon 1, 2 of exon 2, 2 of exon 4, and 6 others, which span exons 2-8. Eight new missense mutations were identified, which cluster within exons 1, 2, 3, and 6 in conserved and/or putative transmembrane domains of the protein. There was also a splice acceptor-site mutation, a nonsense mutation, a single base deletion, and a previously reported 17-bp exon 1 deletion. All patients with nonocular phenotypic abnormalities had detectable mutations. In summary, 26 (approximately 90%) of 29 probands had detectable alterations of OA1, thus confirming that OA1 is the major locus for X-linked OA.


Genomics | 1989

Assignment of the gene for complete X-linked congenital stationary night blindness (CSNB1) to Xp11.3

Maria A. Musarella; Richard G. Weleber; W.H. Murphey; R.S.L. Young; L. Anson-Cartwright; Marilyn B. Mets; S.P. Kraft; R. Polemeno; M. Litt; Ronald G. Worton

X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by a presumptive defect of neurotransmission between the photoreceptor and bipolar cells. Carriers are not clinically detectable. A new classification for CSNB includes a complete type, which lacks rod function by electroretinography and dark adaptometry, and an incomplete type, which shows some rod function on scotopic testing. The refraction in the complete CSNB patients ranges from mild to severe myopia; the incomplete ranges from moderate hyperopia to moderate myopia. To map the gene responsible for this disease, we studied eight multigeneration families, seven with complete CSNB (CSNB1) and one with incomplete CSNB, by linkage analysis using 17 polymorphic X-chromosome markers. We found tight genetic linkage between CSNB1 and an Xp11.3 DNA polymorphic site, DXS7, in seven families with CSNB1 (LOD 7.35 at theta = 0). No recombinations to CSNB1 were found with marker loci DXS7 and DXS14. The result with DXS14 may be due to the small number of scored meioses (10). No linkage could be shown with Xq loci PGK, DXYS1, DXS52, and DXS15. Pairwise linkage analysis maps the gene for CSNB1 at Xp11.3 and suggests that the CSNB1 locus is distal to another Xp11 marker, TIMP, and proximal to the OTC locus. Five-point analysis on the eight families supported the order DXS7-CSNB1-TIMP-DXS225-DXS14. The odds in favor of this order were 9863:1. Removal of the family with incomplete CSNB (F21) revealed two most favored orders, DXS7-CSNB1-TIMP-DXS255-DXS14 and CSNB1-DXS7-TIMP-DXS255-DXS14. Heterogeneity testing using the CSNB1-M27 beta and CSNB1-TIMP linkage data (DXS7 was not informative in F21) was not significant to support evidence of genetic heterogeneity (P = 0.155 and 0.160, respectively).


American Journal of Human Genetics | 1998

Evidence for genetic heterogeneity in X-linked congenital stationary night blindness

Kym M. Boycott; William G. Pearce; Maria A. Musarella; Richard G. Weleber; Tracy A. Maybaum; David G. Birch; Yozo Miyake; Rockefeller S.L. Young; N. Torben Bech-Hansen

X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by disturbed or absent night vision; its clinical features may also include myopia, nystagmus, and impaired visual acuity. X-linked CSNB is clinically heterogeneous, and it may also be genetically heterogeneous. We have studied 32 families with X-linked CSNB, including 11 families with the complete form of CSNB and 21 families with the incomplete form of CSNB, to identify genetic-recombination events that would refine the location of the disease genes. Critical recombination events in the set of families with complete CSNB have localized a disease gene to the region between DXS556 and DXS8083, in Xp11.4-p11.3. Critical recombination events in the set of families with incomplete CSNB have localized a disease gene to the region between DXS722 and DXS8023, in Xp11.23. Further analysis of the incomplete-CSNB families, by means of disease-associated-haplotype construction, identified 17 families, of apparent Mennonite ancestry, that share portions of an ancestral chromosome. Results of this analysis refined the location of the gene for incomplete CSNB to the region between DXS722 and DXS255, a distance of 1.2 Mb. Genetic and clinical analyses of this set of 32 families with X-linked CSNB, together with the family studies reported in the literature, strongly suggest that two loci, one for complete (CSNB1) and one for incomplete (CSNB2) X-linked CSNB, can account for all reported mapping information.


Genomics | 1991

Physical mapping at a potential X-linked retinitis pigmentosa locus (RP3) by pulsed-field gel electrophoresis

Maria A. Musarella; C.Lynn Anson-Cartwright; Cathy McDowell; Arthur H.M. Burghes; Susan E. Coulson; Ronald G. Worton; Johanna M. Rommens

A genetic locus (RP3) for X-linked retinitis pigmentosa (XLRP) has been assigned to Xp21 by genetic linkage studies and has been supported by two Xp21 male deletion patients with XLRP. RP3 appears to be the most centromeric of several positioned loci, including chronic granulomatous disease (CGD), McLeod phenotype (XK), and Duchenne muscular dystrophy (DMD). In one patient, BB, the X-chromosome deletion includes RP3 and extends to within the DMD locus. Using a DMD cDNA, the centromeric endpoint of this patient was cloned and used as a starting point for chromosome walking along a normal X chromosome. A single-copy probe, XH1.4, positioned near the centromeric junction but deleted in BB, was used along with a CGD cDNA probe to establish a refined long-range physical map. Both probes recognized a common SfiI fragment of 205 kb. As the CGD gene covers approximately 30-60 kb, the RP3 locus has been restricted to approximately 150-170 kb. A CpG island, potentially marking a new gene, was identified within the SfiI fragment at a position approximately 35 kb from the deletion endpoint in BB.


Archive | 2001

X-Linked Retinitis Pigmentosa: Current Status

Debra K. Breuer; Maurizio Affer; Sten Andréasson; David G. Birch; Gerald A. Fishman; John R. Heckenlively; Suja Hiriyanna; Dennis R. Hoffman; Samuel G. Jacobson; Alan J. Mears; Maria A. Musarella; Elena Redolfi; Paul A. Sieving; Alan F. Wright; Beverly M. Yashar; Ileana Zucchi; Anand Swaroop

Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal degenerative diseases, characterized by nightblindness, progressive restriction of the visual field and pigmentary retinopathy.1 At least 28 different genetic loci have been mapped for autosomal dominant, autosomal recessive, and X-linked forms of RP. [http://www.sph.uth.tmc.edu/Retnet/home.htm] The X-linked RP (XLRP) subtype is the most severe, with an early age of onset and more rapid progression, accounting for 10 to 20% of RP families.2,3 XLRP is also genetically heterogeneous with at least 5 mapped loci: RP2, RP3, RP6, RP23 and RP24, as schematically depicted in Figure 1. By linkage analysis, RP2 is predicted to account for 10–20% of XLRP and RP3 for 70–90%,4–6 depending on the population. Genes for these two major loci have now been cloned. Our laboratory has been involved in the mutational screening and functional analysis of the two identified XLRP genes (RPGR and RP2), as well as the positional cloning of two other XLRP loci (RP6 and RP24). This report summarizes these efforts as well as the current standing of XLRP research.

Collaboration


Dive into the Maria A. Musarella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald A. Fishman

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David G. Birch

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Sieving

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge