Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María A. Pedreño is active.

Publication


Featured researches published by María A. Pedreño.


Journal of Experimental Botany | 2009

Class III peroxidases in plant defence reactions

Lorena Almagro; L. V. Gómez Ros; Sarai Belchí-Navarro; Roque Bru; A. Ros Barceló; María A. Pedreño

When plants are attacked by pathogens, they defend themselves with an arsenal of defence mechanisms, both passive and active. The active defence responses, which require de novo protein synthesis, are regulated through a complex and interconnected network of signalling pathways that mainly involve three molecules, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), and which results in the synthesis of pathogenesis-related (PR) proteins. Microbe or elicitor-induced signal transduction pathways lead to (i) the reinforcement of cell walls and lignification, (ii) the production of antimicrobial metabolites (phytoalexins), and (iii) the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Among the proteins induced during the host plant defence, class III plant peroxidases (EC 1.11.1.7; hydrogen donor: H(2)O(2) oxidoreductase, Prxs) are well known. They belong to a large multigene family, and participate in a broad range of physiological processes, such as lignin and suberin formation, cross-linking of cell wall components, and synthesis of phytoalexins, or participate in the metabolism of ROS and RNS, both switching on the hypersensitive response (HR), a form of programmed host cell death at the infection site associated with limited pathogen development. The present review focuses on these plant defence reactions in which Prxs are directly or indirectly involved, and ends with the signalling pathways, which regulate Prx gene expression during plant defence. How they are integrated within the complex network of defence responses of any host plant cell will be the cornerstone of future research.


Phytochemical Analysis | 1998

Characterization of the antiradical activity of betalains from Beta vulgaris L. roots

Josefa Escribano; María A. Pedreño; Francisco García-Carmona; R. Muñoz

Betalains (betacyanins and betaxanthins), the main pigments of red beet (Beta vulgaris) roots, showed an antiradical effect when measured by the destruction of the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical generated by the horse-radish peroxidase/hydrogen peroxide-mediated oxidation of ABTS. The antiradical activity of betacyanins was greater than that of the betaxanthins and increased with the pH of the reaction medium. The different antiradical properties shown by both types of betalain is discussed in light of the respective ease with which it is possible to withdraw one electron from their molecules and the stability of their corresponding radicals.


BMC Research Notes | 2008

Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

Diego Lijavetzky; Lorena Almagro; Sarai Belchí-Navarro; José M. Martínez-Zapater; Roque Bru; María A. Pedreño

BackgroundPlant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures.FindingsMeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes.ConclusionThe effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum

Tessa Moses; Jacob Pollier; Lorena Almagro; Dieter Buyst; Marc Van Montagu; María A. Pedreño; José Martins; Johan M. Thevelein; Alain Goossens

Significance Saponins are plant molecules that are produced as a chemical defense against herbivores and eukaryotic pathogens. They constitute structurally diverse, bioactive compounds composed of a 30-carbon triterpene backbone adorned with multiple functional groups and sugars. Saikosaponins are abundant saponins accumulating in the Asian medicinal plant Bupleurum falcatum, but none of the enzymes involved in their biosynthesis had been characterized. We identified a cytochrome P450 involved in the oxidation of saikosaponins, thereby expanding the enzyme compendium that can generate plant saponins with an extra activity. Using this enzyme compendium, we established a synthetic biology program to reconstitute saponin biosynthesis in the yeast Saccharomyces cerevisiae and developed a cyclodextrin-based culturing strategy to sequester triterpenes from engineered yeast cells and enhance their productivity. The saikosaponins comprise oleanane- and ursane-type triterpene saponins that are abundantly present in the roots of the genus Bupleurum widely used in Asian traditional medicine. Here we identified a gene, designated CYP716Y1, encoding a cytochrome P450 monooxygenase from Bupleurum falcatum that catalyzes the C-16α hydroxylation of oleanane- and ursane-type triterpenes. Exploiting this hitherto unavailable enzymatic activity, we launched a combinatorial synthetic biology program in which we combined CYP716Y1 with oxidosqualene cyclase, P450, and glycosyltransferase genes available from other plant species and reconstituted the synthesis of monoglycosylated saponins in yeast. Additionally, we established a culturing strategy in which applying methylated β-cyclodextrin to the culture medium allows the sequestration of heterologous nonvolatile hydrophobic terpenes, such as triterpene sapogenins, from engineered yeast cells into the growth medium, thereby greatly enhancing productivity. Together, our findings provide a sound base for the development of a synthetic biology platform for the production of bioactive triterpene sapo(ge)nins.


Journal of Experimental Botany | 2011

A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism

María José Martínez-Esteso; Susana Sellés-Marchart; Diego Lijavetzky; María A. Pedreño; Roque Bru-Martínez

Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.


Journal of Proteomics | 2009

Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors.

María José Martínez-Esteso; Susana Sellés-Marchart; J.C. Vera-Urbina; María A. Pedreño; Roque Bru-Martínez

In plant cells, elicitors induce defense responses that resemble those triggered by pathogen attack, such as the synthesis of phytoalexins and pathogen-related proteins which accumulate in the extracellular space. In the search for the particular proteins involved in defense responses, we investigated the changes in the extracellular proteome of a grapevine (Vitis vinifera cv. Gamay) cell suspension in response to elicitation with methylated cyclodextrins (MBCD) and methyl jasmonate (MeJA). Twenty-five of the 39 spots differentially expressed in 2-D gels were identified and found to be encoded by 10 different genes: three secretory peroxidases, chitinase-III, beta-1,3-glucanase, thaumatin-like, SGNH plant lipase-like, NtPR27-like, xyloglucan endotransglycosylase and subtilisin-like protease. Most of them belong to the pathogenesis-related type proteins. A new class III secretory basic peroxidase and chitinase III were strongly induced in cultures treated with MBCD alone or combined with MeJA, while cultures treated with MeJA alone displayed a general repression of most of the extracellular proteins. Some of the proteins induced in grapevine cell cultures by MBCD are induced in other species by activators of systemic acquired resistance (SAR), a form of plant immunity. Collectively, the results suggest that treatment with MBCD resembles the effect of SAR induction agents in cell cultures.


Plant Physiology | 2005

Cloning and Molecular Characterization of the Basic Peroxidase Isoenzyme from Zinnia elegans, an Enzyme Involved in Lignin Biosynthesis

Carlos Gabaldón; M. López-Serrano; María A. Pedreño; A. Ros Barceló

The major basic peroxidase from Zinnia elegans (ZePrx) suspension cell cultures was purified and cloned, and its properties and organ expression were characterized. The ZePrx was composed of two isoforms with a Mr (determined by matrix-assisted laser-desorption ionization time of flight) of 34,700 (ZePrx34.70) and a Mr of 33,440 (ZePrx33.44). Both isoforms showed absorption maxima at 403 (Soret band), 500, and 640 nm, suggesting that both are high-spin ferric secretory class III peroxidases. Mr differences between them were due to the glycan moieties, and were confirmed from the total similarity of the N-terminal sequences (LSTTFYDTT) and by the 99.9% similarity of the tryptic fragment fingerprints obtained by reverse-phase nano-liquid chromatography. Four full-length cDNAs coding for these peroxidases were cloned. They only differ in the 5′-untranslated region. These differences probably indicate different ways in mRNA transport, stability, and regulation. According to the kcat and apparent KmRH values shown by both peroxidases for the three monolignols, sinapyl alcohol was the best substrate, the endwise polymerization of sinapyl alcohol by both ZePrxs yielding highly polymerized lignins with polymerization degrees ≥87. Western blots using anti-ZePrx34.70 IgGs showed that ZePrx33.44 was expressed in tracheary elements, roots, and hypocotyls, while ZePrx34.70 was only expressed in roots and young hypocotyls. None of the ZePrx isoforms was significantly expressed in either leaves or cotyledons. A neighbor-joining tree constructed for the four full-length cDNAs suggests that the four putative paralogous genes encoding the four cDNAs result from duplication of a previously duplicated ancestral gene, as may be deduced from the conserved nature and conserved position of the introns.


Functional Plant Biology | 2003

Peroxidase: a multifunctional enzyme in grapevines

Alfonso Ros Barceló; Federico Pomar; M. López-Serrano; María A. Pedreño

Peroxidases are heme-containing enzymes that catalyse the one-electron oxidation of several substrates at the expense of H2O2. They are probably encoded by a large multigene family in grapevines, and therefore show a high degree of polymorphism. Grapevine peroxidases are glycoproteins of high thermal stability, whose molecular weight usually ranges from 35 to 45 kDa. Their visible spectrum shows absorption bands characteristic of high-spin class III peroxidases. Grapevine peroxidases are capable of accepting a wide range of natural compounds as substrates, such as the cell wall protein extensin, plant growth regulators such as IAA, and phenolics such as benzoic acids, stilbenes, flavonols, cinnamyl alcohols and anthocyanins. They are located in cell walls and vacuoles. These locations are in accordance with their key role in determining the final cell wall architecture, especially regarding lignin deposition and extensin insolubilization, and the turnover of vacuolar phenolic metabolites, a task that also forms part of the molecular program of disease resistance. Although peroxidase is a constitutive enzyme in grapevines, its levels are strongly modulated during plant cell development and in response to both biotic and abiotic environmental factors. To gain an insight into the metabolic regulation of peroxidase, several authors have studied how grapevine peroxidase and H2O2 levels change in response to a changing environment. Nevertheless, the results obtained are not always easy to interpret. Despite such difficulties, the response of the peroxidase-H2O2 system to both UV-C radiation and Trichoderma viride elicitors is worthy of study. Both UV-C and T. viride elicitors induce specific changes in peroxidase isoenzyme / H2O2 levels, which result in specific changes in grapevine physiology and metabolism. In the case of T. viride-elicited grapevine cells, they show a particular mechanism for H2O2 production, in which NADPH oxidase-like activities are apparently not involved. However, they offer a unique system whereby the metabolic regulation of peroxidase by H2O2, with all its cross-talks and downstream signals, may be elegantly dissected.


Molecules | 2015

Indole Alkaloids from Catharanthus roseus: Bioproduction and Their Effect on Human Health

Lorena Almagro; Francisco Fernández-Pérez; María A. Pedreño

Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs) of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health.


FEBS Letters | 2002

H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis

F. Pomar; Nuria Caballero; María A. Pedreño; A. Ros Barceló

Characterization of lignified Zinnia elegans hypocotyls by both alkaline nitrobenzene oxidation and thioacidolysis reveals that coniferyl alcohol units are mainly found as part of 4‐O‐linked end groups and aryl‐glycerol‐β‐aryl ether (β‐O‐4) structures. Z. elegans hypocotyls also contain a basic peroxidase (EC 1.11.1.7) capable of oxidizing coniferyl alcohol in the absence of H2O2. Results showed that the oxidase activity of the Z. elegans basic peroxidase is stimulated by superoxide dismutase, and inhibited by catalase and anaerobic conditions. Results also showed that the oxidase activity of this peroxidase is due to an evolutionarily gained optimal adaptation of the enzyme to the μM H2O2 concentrations generated during the auto‐oxidation of coniferyl alcohol, the stoichiometry of the chemical reaction (mol coniferyl alcohol auto‐oxidized/mol H2O2 formed) being 0.496. These results therefore suggest that the H2O2 generated during the auto‐oxidation of coniferyl alcohol is the main factor that drives the unusual oxidase activity of this highly conserved lignin‐synthesizing class III peroxidase.

Collaboration


Dive into the María A. Pedreño's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roque Bru

University of Alicante

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge