Maria Adelaide Marini
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Adelaide Marini.
Obesity | 2007
Ornella Ludovico; Fabio Pellegrini; Rosa Di Paola; Antonio Minenna; Sandra Mastroianno; Marina Cardellini; Maria Adelaide Marini; Francesco Andreozzi; Olga Vaccaro; Giorgio Sesti; Vincenzo Trischitta
Conflicting results have been reported regarding whether the PPARγ2 Pro12Ala polymorphism plays a role in the risk of type 2 diabetes (T2D), suggesting genetic heterogeneity. To investigate this issue, a meta‐analysis of 41 published and 2 unpublished studies (a total of 42,910 subjects) was conducted. Ala12 carriers had a 19% T2D risk reduction, but this association was highly heterogeneous (p = 0.005). A great proportion (48%) of heterogeneity was explained by the controls’ BMI, with risk reduction being greater when BMI was lower. Risk reduction of Ala12 carriers in Asia (35%) was higher than in Europe (15%, p = 0.02) and tended to be higher than in North America (18%, p = 0.10). Difference between Asians and Europeans was no longer significant (p = 0.15) after adjusting for the controls’ BMI. Studies from Europe were still heterogeneous (p = 0.02) with risk reduction in Ala12 carriers being progressively smaller (test for trend in the odds ratios, p = 0.02) from Northern (26% reduction, p < 0.0001) to Central (10%, p = 0.04) and Southern (0%, p = 0.94) Europe. In conclusion, in our meta‐analysis, the reduced risk of T2D in Ala12 carriers is not homogeneous. It is greater in Asia than in Europe and, among Europeans, it is higher in Northern Europe, barely significant in Central Europe, and nonexistent in Southern Europe.
Diabetes | 2006
Daniela Scarpelli; Marina Cardellini; Francesco Andreozzi; Emanuela Laratta; Marta Letizia Hribal; Maria Adelaide Marini; Vittorio Tassi; Renato Lauro; Francesco Perticone; Giorgio Sesti
Interleukin (IL)-10 is a major anti-inflammatory cytokine that has been associated with obesity and type 2 diabetes. The three polymorphisms −1082G/A, −819C/T, and −592C/A in the IL10 promoter were reported to influence IL10 transcription. We investigated whether these polymorphisms were associated with type 2 diabetes and related traits in a cohort of Italian Caucasians comprising 551 type 2 diabetic and 1,131 control subjects. The −819C/T and −592C/A polymorphisms were in perfect linkage disequilibrium (r2 = 1.0). The −1082G/A polymorphism was not associated with type 2 diabetes or related traits. Although the −592C/A polymorphism was not associated with type 2 diabetes, nondiabetic homozygous carriers of the A allele showed increased BMI and insulin resistance and lower plasma IL-10 levels compared with the other genotypes. In the nondiabetic group, the ATA haplotype was associated with an increased risk for obesity (odds ratio 1.28 [95% CI 1.02–1.60]; P = 0.02). The ATA/ATA composite genotype was associated with an increased risk for obesity (1.96 [1.16–3.31]; P = 0.01) and insulin resistance (1.99 [1.12–3.53]; P = 0.01). This study suggests that polymorphisms and haplotypes of the IL10 promoter may be associated with obesity and insulin resistance in a large sample of Italian Caucasians.
Diabetes Care | 2012
Maria Adelaide Marini; Elena Succurro; Ersilia Castaldo; Sabrina Cufone; Franco Arturi; Angela Sciacqua; Renato Lauro; Marta Letizia Hribal; Francesco Perticone; Giorgio Sesti
OBJECTIVE We evaluated whether cardiometabolic risk profiles differ for subjects identified as having prediabetes by A1C, fasting glucose (FPG), or 2-h postchallenge glucose (2-PG) criteria. RESEARCH DESIGN AND METHODS Atherosclerosis risk factors, oral glucose tolerance test, and ultrasound measurement of carotid intima–media thickness (IMT) were analyzed in 780 nondiabetic individuals. RESULTS Poor agreement existed for A1C and FPG criteria for identification of subjects with prediabetes (κ coefficient = 0.332). No differences in cardiometabolic risk profiles were observed among the three groups of individuals with prediabetes by A1C only, FPG only, and both A1C and FPG. Poor agreement also existed for A1C and 2-PG criteria for identification of individuals with prediabetes (κ coefficient = 0.299). No significant differences in cardiometabolic risk factors were observed between IGT-only and individuals with prediabetes by A1C and 2-PG. Compared with subjects with prediabetes identified by A1C only, IGT-only individuals exhibited a worse cardiometabolic risk profile, with significantly higher systolic blood pressure, pulse pressure, 2-h postchallenge insulin, triglycerides, high-sensitivity C-reactive protein, and carotid IMT, and lower HDL cholesterol levels and insulin sensitivity. CONCLUSIONS These results suggest that considerable discordance between A1C, FPG, and 2-PG exists for the identification of individuals with prediabetes and that the cardiometabolic risk profile of these individuals varies by metabolic parameter, with 2-PG showing the stronger association with cardiometabolic risk factors and subclinical atherosclerosis than FPG or A1C.
Diabetes | 2008
Harald Staiger; Alena Stančáková; Jone Zilinskaite; Markku Vänttinen; Torben Hansen; Maria Adelaide Marini; Ann Hammarstedt; Per-Anders Jansson; Giorgio Sesti; Ulf Smith; Oluf Pedersen; Markku Laakso; Norbert Stefan; Andreas Fritsche; Hans-Ulrich Häring
OBJECTIVE—In recent genome-wide association studies, two single nucleotide polymorphisms (SNPs) near the HHEX locus were shown to be more frequent in type 2 diabetic patients than in control subjects. Based on HHEXs function during embryonic development of the ventral pancreas in mice, we investigated whether these SNPs affect β-cell function in humans. RESEARCH DESIGN AND METHODS—A total of 854 nondiabetic subjects, collected from five European clinical centers, were genotyped for the HHEX SNPs rs1111875 and rs7923837 and thoroughly characterized by an oral glucose tolerance test (OGTT). To assess glucose-stimulated insulin release, a subgroup of 758 subjects underwent an intravenous glucose tolerance test (IVGTT). RESULTS—SNPs rs1111875 and rs7923837 were not associated with anthropometric data (age, weight, height, BMI, body fat, and waist and hip circumference). After adjustment for center, family relationship, sex, age, and BMI, both SNPs were also not associated with glucose and insulin concentrations in the fasting state and during the OGTT or with measures of insulin sensitivity. Furthermore, HHEX SNP rs1111875 was not associated with insulin release during the IVGTT. By contrast, the minor A-allele of HHEX SNP rs7923837 was significantly associated with higher IVGTT-derived first-phase insulin release before and after appropriate adjustment (P = 0.013 and P = 0.014, respectively). CONCLUSIONS—A common genetic variation in the 3′-flanking region of the HHEX locus, i.e., SNP rs7923837, is associated with altered glucose-stimulated insulin release. This SNPs major allele represents a risk allele for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells toward adverse environmental factors.
Diabetes | 2006
Francesco Andreozzi; Emanuela Laratta; Marina Cardellini; Maria Adelaide Marini; Renato Lauro; Marta Letizia Hribal; Francesco Perticone; Giorgio Sesti
We have investigated the relationships between plasma interleukin-6 (IL-6) levels and insulin sensitivity and insulin secretion in a cohort of Italian-Caucasian glucose-tolerant subjects. Insulin sensitivity was assessed by euglycemic-hyperinsulinemic clamp, and first-phase insulin secretion was measured by intravenous glucose tolerance test. Fasting plasma IL-6 concentration was negatively correlated with the rate of insulin-stimulated glucose disposal (M) (P = 0.001). The correlation remained statistically significant, while attenuated, after adjusting for sex, age, and BMI (P < 0.03); after an additional adjustment for free fatty acids (FFAs), a further attenuation was observed, but statistical significance was maintained (P < 0.044). Fasting plasma IL-6 concentration was positively correlated with first-phase insulin secretion assessed as acute insulin response (AIR) (P = 0.001). The correlation remained significant after adjusting for sex, age, and BMI (P = 0.003). To estimate the independent contribution of plasma IL-6 levels to AIR, we carried out forward stepwise linear regression analysis in a model that included sex, age, BMI, waist-to-hip ratio, FFAs, and insulin-stimulated glucose disposal. Only insulin sensitivity and plasma IL-6 concentration were independently associated with AIR, accounting, respectively, for 19.0 and 5.2% of its variation. These data indicate that IL-6 is associated in a reciprocal manner with the two pathophysiological components of type 2 diabetes, i.e., insulin resistance and insulin secretion.
Biochemical and Biophysical Research Communications | 1991
Giorgio Sesti; Maria Adelaide Marini; Antonella Nadia Tullio; Antonio Montemurro; Patrizia Borboni; Angelo Fusco; Domenico Accili; Renato Lauro
The human insulin receptor gene is expressed in two variant isoforms which differ by the absence (HIR-A) or presence (HIR-B) of 12 amino acids in the COOH-terminus of the extracellular alpha-subunit as a consequence of alternative splicing of exon 11. Expression of the two variant isoforms is regulated in a tissue-specific manner. In this study, we have measured the levels of the two receptor variants in isolated adipocytes from 10 non-insulin-dependent diabetes mellitus (NIDDM) and 11 normal subjects using an immunological assay, based on the ability of a human anti-receptor autoantibody to discriminate between HIR-A and HIR-B. Results indicate that levels of HIR-B variant are increased in NIDDM patients.
Diabetes Care | 2012
Maria Adelaide Marini; Elena Succurro; Simona Frontoni; Simona Mastroianni; Franco Arturi; Angela Sciacqua; Renato Lauro; Marta Letizia Hribal; Francesco Perticone; Giorgio Sesti
OBJECTIVE Individuals with normal glucose tolerance (NGT), whose 1-h postload plasma glucose is ≥155 mg/dL (NGT 1h-high), have an increased risk of type 2 diabetes. The purpose of this study was to characterize their metabolic phenotype. RESEARCH DESIGN AND METHODS A total of 305 nondiabetic offspring of type 2 diabetic patients was consecutively recruited. Insulin secretion was assessed using both indexes derived from oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. RESULTS Compared with individuals with a 1-h postload plasma glucose <155 mg/dL (NGT 1h-low), NGT 1h-high individuals exhibited lower insulin sensitivity after adjustment for age, sex, and BMI. Insulin secretion estimated from the OGTT did not differ between the two groups of individuals. By contrast, compared with NGT 1h-low individuals, the acute insulin response during an IVGTT and the disposition index were significantly reduced in NGT 1h-high individuals after adjustment for age, sex, and BMI. Incretin effect, estimated as the ratio between total insulin responses during OGTT and IVGTT, was higher in NGT 1h-high individuals compared with NGT 1h-low individuals. CONCLUSIONS NGT 1h-high individuals may represent an intermediate state of glucose intolerance between NGT and type 2 diabetes characterized by insulin resistance and reduced β-cell function, the two main pathophysiological defects responsible for the development of type 2 diabetes. Postload hyperglycemia is the result of an intrinsic β-cell defect rather than impaired incretin effect.
Diabetes | 2011
Marina Cardellini; Rossella Menghini; Alessio Luzi; Francesca Davato; Iris Cardolini; Rossella D'Alfonso; Paolo Gentileschi; Stefano Rizza; Maria Adelaide Marini; Ottavia Porzio; Davide Lauro; Paolo Sbraccia; Renato Lauro; Massimo Federici
OBJECTIVE In humans, it is unclear if insulin resistance at the monocyte level is associated with atherosclerosis in vivo. Here we have studied first-degree relatives of patients with type 2 diabetes to investigate whether a reduction in components of the insulin signal transduction pathways, such as the insulin receptor (InsR) or InsR substrate 1 or 2 (IRS1 or IRS2), or a reduction in genetic modifiers of insulin action, such as the TIMP3/ADAM17 (tissue inhibitor of metalloproteinase 3/A disintegrin and metalloprotease domain 17) pathway, is associated with evidence of atherosclerosis. RESEARCH DESIGN AND METHODS Insulin sensitivity was analyzed through euglycemic-hyperinsulinemic clamp, and subclinical atherosclerosis was analyzed through intimal medial thickness. Monocytes were isolated through magnetic cell sorting, and mRNA and proteins were extracted and analyzed by quantitative PCR and pathscan enzyme-linked immunosorbent assays, respectively. RESULTS In monocyte cells from human subjects with increased risk for diabetes and atherosclerosis, we found that gene expression, protein levels, and tyrosine phosphorylation of IRS2, but not InsR or IRS1, were decreased. TIMP3 was also reduced, along with insulin resistance, resulting in increased ectodomain shedding activity of the metalloprotease ADAM17. CONCLUSIONS Systemic insulin resistance and subclinical atherosclerosis are associated with decreased IRS2 and TIMP3 expression in circulating monocytes.
Molecular and Cellular Endocrinology | 1992
Giorgio Sesti; Maria Adelaide Marini; Paola Briata; Antonella Nadia Tullio; Antonio Montemurro; Patrizia Borboni; Roberto De Pirro; Roberto Gherzi; Renato Lauro
Androgen receptors have been found in human larynx and androgens have been supposed to play an important role in promoting the growth of laryngeal carcinomas. The molecular mechanism underlaying this phenomenon is not at all understood. Aim of this work was to investigate the effects of two androgens (testosterone and dihydrotestosterone) on insulin receptor mRNA levels and insulin binding activity as well as on either metabolic or growth-promoting actions of insulin in a human larynx carcinoma cell line (HEp-2). We found that HEp-2 cells express a high affinity insulin receptor. Both androgens significantly increase insulin receptor mRNA levels and insulin receptor number in HEp-2 cells. Insulin action, evaluated either as total glucose utilization or as [3H]thymidine incorporation into DNA, significantly increased in HEp-2 treated with androgens in comparison to control cultures. Altogether, our data allow us to speculate that the increased insulin effectiveness we observed in the larynx carcinoma cell line HEp-2 after androgen treatment might be involved in the regulation of larynx cancer cells growth.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2017
Rosangela Spiga; Maria Adelaide Marini; Elettra Mancuso; Concetta Di Fatta; Anastasia Fuoco; Francesco Perticone; Francesco Andreozzi; Gaia Chiara Mannino; Giorgio Sesti
Objective— Serum uric acid (UA) has been associated with increased risk of cardiovascular and metabolic diseases. However, the causal mechanisms linking elevated UA levels to cardio-metabolic diseases are still unsettled. One potential explanation for how UA might contribute to cardio-metabolic disease might be its ability to induce systemic inflammation. Approach and Results— Herein, we report a positive relationship between serum UA and acute-phase reactants, such as high-sensitivity C-reactive protein, fibrinogen, ferritin, complement C3, and erythrocyte sedimentation rate, in a cohort of 2731 nondiabetic adults. The relationship remains significant after adjustment for several confounders, including age, sex, adiposity, anti-hypertensive treatments or diuretics use. To confirm the existence of a causal relationship, we examined the effect of UA on the expression of inflammatory biomarkers in human hepatoma HepG2 cells and characterized the signaling pathway by which UA acts. We show that UA stimulates the expression of C-reactive protein, fibrinogen, ferritin, and complement C3 in a dose-dependent fashion. The proinflammatory effects of UA were abrogated by benzbromarone, a specific inhibitor of UA transporters. Exposure of cells to UA resulted in activation of the I&kgr;B kinase/I&kgr;B&agr;/NF-&kgr;B signaling pathway that was attenuated by benzbromarone. The effect of UA was completely blocked by the antioxidant N-acetylcysteine. Conclusions— These in vivo and in vitro data suggest that hyperuricemia might induce the expression of hepatic inflammatory molecules by activating the proinflammatory NF-&kgr;B signaling cascade. Because inflammation has an important pathogenetic role in metabolic and cardiovascular disease, our study may help understanding the mechanism by which hyperuricemia may contribute to organ damage.
Collaboration
Dive into the Maria Adelaide Marini's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs