Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Adele Rueger is active.

Publication


Featured researches published by Maria Adele Rueger.


Nature | 2006

Notch signalling regulates stem cell numbers in vitro and in vivo

Andreas Androutsellis-Theotokis; Ronen R. Leker; Frank Soldner; Daniel J. Hoeppner; Rea Ravin; Steve W. Poser; Maria Adele Rueger; Soo-Kyung Bae; Raja Kittappa; Ronald D. G. McKay

The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Targeting neural precursors in the adult brain rescues injured dopamine neurons

Andreas Androutsellis-Theotokis; Maria Adele Rueger; Deric M. Park; Haik Mkhikian; Erica Korb; Steve W. Poser; Stuart Walbridge; Jeeva Munasinghe; Alan P. Koretsky; Russel R. Lonser; Ronald D. G. McKay

In Parkinsons disease, multiple cell types in many brain regions are afflicted. As a consequence, a therapeutic strategy that activates a general neuroprotective response may be valuable. We have previously shown that Notch ligands support neural precursor cells in vitro and in vivo. Here we show that neural precursors express the angiopoietin receptor Tie2 and that injections of angiopoietin2 activate precursors in the adult brain. Signaling downstream of Tie2 and the Notch receptor regulate blood vessel formation. In the adult brain, angiopoietin2 and the Notch ligand Dll4 activate neural precursors with opposing effects on the density of blood vessels. A model of Parkinsons disease was used to show that angiopoietin2 and Dll4 rescue injured dopamine neurons with motor behavioral improvement. A combination of growth factors with little impact on the vasculature retains the ability to stimulate neural precursors and protect dopamine neurons. The cellular and pharmacological basis of the neuroprotective effects achieved by these single treatments merits further analysis.


PLOS ONE | 2012

Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain.

Maria Adele Rueger; Meike Hedwig Keuters; Maureen Walberer; Ramona Braun; Rebecca C. Klein; Roland Sparing; Gereon R. Fink; Rudolf Graf; Michael Schroeter

Transcranial direct current stimulation (tDCS) is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16) were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min). Bromodeoxyuridine (BrdU) was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC). Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.


PLOS ONE | 2010

Angiogenic factors stimulate growth of adult neural stem cells.

Andreas Androutsellis-Theotokis; Maria Adele Rueger; Deric M. Park; Justin D. Boyd; Raji Padmanabhan; Loraine Campanati; Craig V. Stewart; Yann LeFranc; Dietmar Plenz; Stuart Walbridge; Russell R. Lonser; Ronald D. G. McKay

Background The ability to grow a uniform cell type from the adult central nervous system (CNS) is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC) found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools [1], [2], [3], [4], [5], [6]. Methodology/Principal Findings Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4) and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2). These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. Conclusions/Significance We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.


Cold Spring Harbor Symposia on Quantitative Biology | 2008

Signaling Pathways Controlling Neural Stem Cells Slow Progressive Brain Disease

Andreas Androutsellis-Theotokis; Maria Adele Rueger; H. Mkhikian; E. Korb; Ronald D. G. McKay

The identification and characterization of multipotent neural precursors open the possibility of transplant therapies, but this approach is complicated by the widespread pathology of many degenerative diseases. Activation of endogenous precursors that support regenerative mechanisms is a possible alternative. We have previously shown that Notch ligands promote stem cell survival in vitro. Here, we show that there is an intimate interaction between insulin and Notch receptor signaling. Notch ligands also expand stem cell numbers in vivo with correlated benefits in brain ischemia. We now show that insulin promotes recovery of injured dopamine neurons in the adult brain. This response suggests that activating survival mechanisms in neural stem cells will promote recovery from progressive degenerative disease.


Stem Cell Research & Therapy | 2015

Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4

Monika Rabenstein; Joerg Hucklenbroich; Antje Willuweit; Anne Ladwig; Gereon R. Fink; Michael Schroeter; Karl-Josef Langen; Maria Adele Rueger

IntroductionOsteopontin (OPN) is a phosphoglycoprotein with important roles in tissue homeostasis, wound healing, immune regulation, and stress responses. It is expressed constitutively in the brain and upregulated during neuroinflammatory responses; for example, after focal cerebral ischemia. To date, its effects on neural stem cells (NSC) remain to be elucidated and are, accordingly, the subject of this study.MethodPrimary fetal rat NSC were cultured as homogenous monolayers and treated with different concentrations of OPN. Fundamental properties of NSC were assessed following OPN exposure, including proliferative activity, survival under oxidative stress, migration, and differentiation potential. To elucidate a putative action of OPN via the CXC chemokine receptor type 4 (CXCR4), the latter was blocked with AMD3100. To investigate effects of OPN on endogenous NSC in vivo, recombinant OPN was injected into the brain of healthy adult rats as well as rats subjected to focal cerebral ischemia. Effects of OPN on NSC proliferation and neurogenesis in the subventricular zone were studied immunohistochemically.ResultsOPN dose-dependently increased the number of NSC in vitro. As hypothesized, this effect was mediated through CXCR4. The increase in NSC number was due to both enhanced cell proliferation and increased survival, and was confirmed in vivo. Additionally, OPN dose-dependently stimulated the migration of NSC via CXCR4. Moreover, in the presence of OPN, differentiation of NSC led to a significant increase in neurogenesis both in vitro as well as in vivo after cerebral ischemia.ConclusionData show positive effects of OPN on survival, proliferation, migration, and neuronal differentiation of NSC. At least in part these effects were mediated via CXCR4. Results suggest that OPN is a promising substance for the targeted activation of NSC in future experimental therapies for neurological disorders such as stroke.


Cns & Neurological Disorders-drug Targets | 2012

Neurovascular Signals Suggest a Propagation Mechanism for Endogenous Stem Cell Activation Along Blood Vessels

Jimmy Masjkur; Maria Adele Rueger; Stefan R. Bornstein; Ron McKay; Andreas Androutsellis-Theotokis

Stem cell – based therapies for central nervous system disorders are intensely pursued. Such approaches can be divided into two categories: Transplantation-based, and those that aim to pharmacologically target the endogenous stem cell population in the tissue. Endogenous stem cell – based strategies avoid the problem of immune incompatibility between the host and the grafted cells. They also avoid the placement of a large amount of cells in confined areas, a manipulation which alters the characteristics of the neurovascular microenvironment. We show here that massive pharmacological activation (increase in cell numbers) of the endogenous neural stem cell population in the adult rodent brain maintains the cytoarchitecture of the neurovascular niche. Distances between adjacent stem cells (identified by expression of Hes3) are maintained above a minimum. Hes3+ cells maintain their physical association with blood vessels. These results also suggest a mechanism by which the activation signal from the lateral ventricle can be propagated to areas a long distance away from the lateral ventricles, through autocrine/paracrine actions between adjacent Hes3+ cells, along blood vessels. Finally, powerful effects of angiopoietin 2 on Hes3+ cells help explain the prevalence of proliferating endogenous neural stem cells close to the subventricular zone (an area of high angiopoietin 2 concentration) and the quiescent state of stem cells away from the ventricles and their tight physical association with blood vessels (which express high levels of angiopoietin 1, a cytokine that opposes angiopoietin 2 functions).


Journal of Neuroimmunology | 2016

Osteopontin directly modulates cytokine expression of primary microglia and increases their survival

Monika Rabenstein; Sabine Ulrike Vay; Lea Jessica Flitsch; Gereon R. Fink; Michael Schroeter; Maria Adele Rueger

Osteopontin (OPN) is constitutively expressed in the brain and upregulated during neuroinflammation, e.g., focal cerebral ischemia. In OPN-deficient mice, microglia are deregulated after ischemia, but specific OPN-effects on microglia remain elusive. Primary microglia were cultured in the presence or absence of OPN. The survival of microglia under stress conditions was dose-dependently increased by OPN. Lipopolysaccharides (LPS)-induced release of nitric oxide (NO), TNF-α, and IL-6, as well as expression of inducible Nitric Oxide Synthase (iNOS), were attenuated by OPN. Data suggest that OPN modulates microglia function by shifting their inflammatory profile towards a neutral anti-inflammatory phenotype.


Journal of Neuroscience Research | 2016

Minocycline mitigates the gliogenic effects of proinflammatory cytokines on neural stem cells.

Sabine Ulrike Vay; Stefan Blaschke; Rebecca C. Klein; Gereon R. Fink; Michael Schroeter; Maria Adele Rueger

Mobilizing endogenous neural stem cells (NSCs) in the adult brain is designed to enhance the brains regenerative capacity after cerebral lesions, e.g., as a result of stroke. Cerebral ischemia elicits neuroinflammatory processes affecting NSCs in multiple ways, the precise mechanisms of which currently remain elusive. An inhibitory effect of minocycline on microglia activation, a hallmark of postischemic neuroinflammation, has already been demonstrated in clinical trials, showing minocycline to be safe and potentially effective in ischemic stroke. Here we investigate the direct effects of minocycline and of proinflammatory cytokines on the differentiation potential of NSCs in vitro and in vivo. Primary fetal rat NSCs were treated with minocycline plus a combination of the proinflammatory cytokines tumor necrosis factor‐α, interleukin 1β, and interleukin 6. The differentiation fate of NSCs was assessed immunocytochemically. To investigate the effects of minocycline and inflammation in vivo, minocycline or lipopolysaccharides were injected intraperitoneally into adult rats, with subsequent immunohistochemistry. Minocycline alone did not affect the differentiation potential of NSCs in vivo or in vitro. In contrast, proinflammatory cytokines accelerated the differentiation of NSCs, promoting an astrocytic fate while inhibiting neurogenesis in vitro and in vivo. It is interesting to note that minocycline counteracted this cytokine‐induced rapid astrocytic differentiation and restored the neurogenic and oligodendrogliogenic potential of NSCs. Data suggest that minocycline antagonizes the rapid glial differentiation induced by proinflammatory cytokines following cerebral ischemia but without having a direct effect on the differentiation potential of NSCs. Thus, minocycline constitutes a promising drug for stroke research, counteracting the detrimental effects of postischemic neuroinflammation in multiple ways.


Annals of Translational Medicine | 2015

The macrosphere model—an embolic stroke model for studying the pathophysiology of focal cerebral ischemia in a translational approach

Maureen Walberer; Maria Adele Rueger

The main challenge of stroke research is to translate promising experimental findings from the bench to the bedside. Many suggestions have been made how to achieve this goal, identifying the need for appropriate experimental animal models as one key issue. We here discuss the macrosphere model of focal cerebral ischemia in the rat, which closely resembles the pathophysiology of human stroke both in its acute and chronic phase. Key pathophysiological processes such as brain edema, cortical spreading depolarizations (CSD), neuroinflammation, and stem cell-mediated regeneration are observed in this stroke model, following characteristic temporo-spatial patterns. Non-invasive in vivo imaging allows studying the macrosphere model from the very onset of ischemia up to late remodeling processes in an intraindividual and longitudinal fashion. Such a design of pre-clinical stroke studies provides the basis for a successful translation into the clinic.

Collaboration


Dive into the Maria Adele Rueger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald D. G. McKay

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antje Willuweit

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Bernd Neumaier

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge