María Alejandra Mussi
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Alejandra Mussi.
Antimicrobial Agents and Chemotherapy | 2005
María Alejandra Mussi; Adriana S. Limansky; Alejandro M. Viale
ABSTRACT The outer membrane proteins responsible for the influx of carbapenem β-lactam antibiotics in the nonfermentative gram-negative pathogen Acinetobacter baumannii are still poorly characterized. Resistance to both imipenem and meropenem in multidrug-resistant clinical strains of A. baumannii is associated with the loss of a heat-modifiable 29-kDa outer membrane protein, designated CarO. The chromosomal locus containing the carO gene was cloned and characterized from different clinical isolates. Only one carO copy, present in a single transcriptional unit, was found in the A. baumannii genome. The carO gene encodes a polypeptide of 247 amino acid residues with a typical N-terminal signal sequence and a predicted transmembrane β-barrel topology. Its absence from different carbapenem-resistant clinical isolates of A. baumannii resulted from the disruption of carO by distinct insertion elements. The overall data thus support the notion that CarO participates in the influx of carbapenem antibiotics in A. baumannii. Moreover, database searches identified the presence of carO homologs only in species of the genera Acinetobacter, Moraxella, and Psychrobacter, disclosing the existence of a novel family of outer membrane proteins restricted to the family Moraxellaceae of the class γ-Proteobacteria.
Journal of Bacteriology | 2010
María Alejandra Mussi; Jennifer A. Gaddy; Matías Cabruja; Brock A. Arivett; Alejandro M. Viale; Rodolfo Rasia; Luis A. Actis
Light is a ubiquitous environmental signal that many organisms sense and respond to by modulating their physiological responses accordingly. While this is an expected response among phototrophic microorganisms, the ability of chemotrophic prokaryotes to sense and react to light has become a puzzling and novel issue in bacterial physiology, particularly among bacterial pathogens. In this work, we show that the opportunistic pathogen Acinetobacter baumannii senses and responds to blue light. Motility and formation of biofilms and pellicles were observed only when bacterial cells were incubated in darkness. In contrast, the killing of Candida albicans filaments was enhanced when they were cocultured with bacteria under light. These bacterial responses depend on the expression of the A. baumannii ATCC 17978 A1S_2225 gene, which codes for an 18.6-kDa protein that contains an N-terminal blue-light-sensing-using flavin (BLUF) domain and lacks a detectable output domain(s). Spectral analyses of the purified recombinant protein showed its ability to sense light by a red shift upon illumination. Therefore, the A1S_2225 gene, which is present in several members of the Acinetobacter genus, was named blue-light-sensing A (blsA). Interestingly, temperature plays a role in the ability of A. baumannii to sense and respond to light via the BlsA photoreceptor protein.
Journal of Clinical Microbiology | 2002
Adriana S. Limansky; María Alejandra Mussi; Alejandro M. Viale
ABSTRACT We analyzed the possible causes of imipenem (IPM) resistance in multidrug-resistant isolates of Acinetobacter baumannii. Comparison of the outer membrane protein (OMP) profiles of two genomically related strains (Ab288 [IPM sensitive] and Ab242 [IPM resistant]) indicated the conspicuous loss of a 29-kDa polypeptide in the Ab242 strain. No carbapenemase activity was detected in any of these strains. The treatment of Ab288 with sodium salicylate resulted in IPM resistance and the loss of the 29-kDa OMP. In addition, IPM-resistant clones of Ab288 which were selected by repetitive culturing in increasing concentrations of this antibiotic also showed the absence of this 29-kDa OMP.
FEBS Letters | 2007
María Alejandra Mussi; Verónica Relling; Adriana S. Limansky; Alejandro M. Viale
We previously associated the emergence of carbapenem resistance in Acinetobacter baumannii with the loss of an outer membrane (OM) protein designated CarO. CarO was found essential for l‐ornithine uptake: CarO‐deficient strains were specifically impaired to grow only on l‐ornithine, and failed to incorporate l‐[14C] ornithine from the medium. l‐arginine, and histidine and lysine to a lower extent, could effectively compete for l‐[14C] ornithine uptake. l‐ornithine also reduced A. baumannii sensitivity to imipenem, suggesting that both compounds compete for uptake. The overall results indicate that CarO participates in the selective uptake of l‐ornithine, carbapenems, and other basic amino acids in A. baumannii.
Journal of Clinical Microbiology | 2005
Patricia Marchiaro; María Alejandra Mussi; Viviana Ballerini; Fernando Pasteran; Alejandro M. Viale; Alejandro J. Vila; Adriana S. Limansky
ABSTRACT The worldwide spread of metallo-β-lactamase (MBL)-producing gram-negative bacilli represents a great concern nowadays. Sensitive assays for their specific detection are increasingly demanded to aid infection control and to prevent their dissemination. We have developed a novel microbiological assay employing crude bacterial extracts, designated EDTA-imipenem microbiological assay (EIM), to identify MBLs in nonfermentative gram-negative clinical strains. We also evaluated the ability of EIM to detect MBLs in comparison to those of other currently employed screening methods, such as the EDTA disk synergy test (EDS) with imipenem as a substrate and the Etest method. The sensitivities of EIM and Etest were similar (1 versus 0.92, respectively) and much higher than that of EDS (0.67). Moreover, both EIM and Etest displayed the maximum specificity. Modifications were introduced to EDS, including the simultaneous testing of three different β-lactams (imipenem, meropenem, and ceftazidime) and two different EDTA concentrations. This resulted in a sensitivity improvement (0.92), albeit at a cost to its specificity. A simple strategy to accurately detect MBL producers is proposed; this strategy combines (i) an initial screening of the isolates by the extended EDS assay to select the potential candidates and (ii) confirmation of the true presence of MBL activity by EIM.
Antimicrobial Agents and Chemotherapy | 2011
Pablo Ravasi; Adriana S. Limansky; Ramiro E. Rodriguez; Alejandro M. Viale; María Alejandra Mussi
ABSTRACT ISAba825, an insertion sequence found inactivating Acinetobacter baumannii carO, was tagged with a kanamycin (Kn) resistance cassette. ISAba825::Kn effectively transposed in A. baumannii, showing preference for short, AT-enriched target sequences, generating 6- to 9-bp target duplications. Additionally, we detected the presence of ISAba825 upstream of a plasmid-borne bla OXA-58 gene, generating a hybrid promoter largely enhancing its expression and leading to carbapenem resistance. Overall, a role for ISAba825 in carbapenem resistance modulation in A. baumannii is proposed.
Journal of Antimicrobial Chemotherapy | 2008
Patricia Marchiaro; Viviana Ballerini; Tamara Spalding; Gabriela Cera; María Alejandra Mussi; Jorgelina Morán-Barrio; Alejandro J. Vila; Alejandro M. Viale; Adriana S. Limansky
OBJECTIVES The dissemination of metallo and serine carbapenem-hydrolysing beta-lactamases among Gram-negative nosocomial bacteria represents an acute problem worldwide. Here, we present a rapid and sensitive assay for the characterization of carbapenemase producers to aid in infection control and prevention. METHODS The assay involves a rapid disruption of bacterial isolates with silicon dioxide microbeads, followed by the testing in cell-free extracts of hydrolytic activity towards various beta-lactams including two carbapenems (imipenem and meropenem) and a cephalosporin (ceftazidime). A parallel testing of the effects of selective beta-lactamase inhibitors such as EDTA and clavulanic acid allows differentiation of metallo carbapenemases from serine carbapenemases, and also clavulanic-acid-sensitive from -resistant enzymes among the latter. RESULTS The efficiency of bacterial disruption using silicon dioxide microbeads was identical to that of ultrasonic treatment. The subsequent microbiological assay aimed to evaluate both substrate specificity and inhibitor profile of carbapenem-hydrolysing enzymes present in the extracts and allowed an accurate differentiation of A, B and D types, as judged by the analysis of 24 well-characterized clinical strains that included metallo-beta-lactamase producers (i.e. VIM-, IMP- and SPM-type Pseudomonas producers; an L1 Stenotrophomonas maltophilia producer; and a GOB-18 Elizabethkingia meningoseptica producer) as well as serine carbapenemase producers (i.e. an SME-type Serratia marcescens producer, a GES-2 Pseudomonas aeruginosa producer, Klebsiella pneumoniae and Citrobacter freundii KPC-2 producers and OXA-type Acinetobacter baumannii producers). CONCLUSIONS We have developed a convenient microbiological assay aimed to more accurately and in a short time characterize carbapenem-hydrolysing enzymes produced by Gram-negative bacteria. The assay possesses broad applicability in the clinical setting.
Journal of Bacteriology | 2011
María Alejandra Mussi; Adriana S. Limansky; Verónica Relling; Pablo Ravasi; Adrian K. Arakaki; Luis A. Actis; Alejandro M. Viale
We described previously the presence in Acinetobacter baumannii of a novel outer membrane (OM) protein, CarO, which functions as an L-ornithine OM channel and whose loss was concomitant with increased carbapenem resistance among clonally related nosocomial isolates of this opportunistic pathogen. Here, we describe the existence of extensive genetic diversity at the carO gene within the A. baumannii clinical population. The systematic analysis of carO sequences from A. baumannii isolates obtained from public hospitals in Argentina revealed the existence of four highly polymorphic carO variants among them. Sequence polymorphism between the different A. baumannii CarO variants was concentrated in three well-defined protein regions that superimposed mostly to predicted surface-exposed loops. Polymorphism among A. baumannii CarO variants was manifested in differential electrophoretic mobilities, antigenic properties, abilities to form stable oligomeric structures, and l-ornithine influx abilities through the A. baumannii OM under in vivo conditions. Incongruence between the phylogenies of the clinical A. baumannii isolates analyzed and those of the carO variants they harbor suggests the existence of assortative (entire-gene) carO recombinational exchange within the A. baumannii population. Exchange of carO variants possessing differential characteristics mediated by horizontal gene transfer may constitute an A. baumannii population strategy to survive radically changing environmental conditions, such as the leap from inanimate sources to human hosts and vice versa, persistence in a compromised host, and/or survival in health care facilities.
PLOS ONE | 2013
Adrián Ezequiel Golic; Mario Vaneechoutte; Alexandr Nemec; Alejandro M. Viale; Luis A. Actis; María Alejandra Mussi
We previously showed that the opportunistic nosocomial pathogen Acinetobacter baumannii is able to sense and respond to light via BlsA, a BLUF (Blue-Light-sensing Using FAD)-domain photoreceptor protein. Here, we extend our previous studies showing that light regulation is not restricted to A. baumannii, but rather widespread within the genus Acinetobacter. First, we found that blue light modulates motility and biofilm formation in many species of the genus, including members of the Acinetobacter calcoaceticus-A. baumannii complex. In many of these species blue light acts as a key factor guiding the decision between motility or sessility at 24°C, whereas in A. baumannii, light inhibits both motility and biofilm formation. We also show that light regulation of motility occurred not only at 24°C but also at 37°C in non-A. baumannii species, contrasting the situation of A. baumannii which only shows photoregulation at 24°C. Second, we show that Acinetobacter baylyi (strain ADP1) BLUF-photoreceptors can functionally replace in vivo the A. baumannii 17978 BlsA protein and that the pathways leading to biofilm formation are inversely regulated at 24°C between these two microorganisms. Finally, we found the presence of predicted genes coding BLUF-containing proteins in all Acinetobacter sequenced genomes, even though the copy number is variable among them. Phylogenetic analysis suggests a common origin for all BLUF domains present in members of this genus, and could distinguish well-differentiated clusters that group together BLUF homologs from different species, a situation particularly clear for members of the ACB complex. Despite a role played by these BLUF domain-containing proteins in the photoregulation observed in the members of the genus Acinetobacter is a likely scenario given our findings in A. baumannii and A. baylyi, further research will contribute to confirm this possibility.
Clinical Microbiology and Infection | 2010
F. Quinones-Falconi; M. Galicia-Velasco; Patricia Marchiaro; María Alejandra Mussi; Viviana Ballerini; Alejandro J. Vila; Alejandro M. Viale; K. Bermejo-Morales; Adriana S. Limansky
Eighty-six carbapenem non-susceptible Pseudomonas aeruginosa isolates collected in the National Institute of Respiratory Diseases of Mexico City were screened for the presence of metallo-beta-lactamase (MBL) activity using both E-test strips and a microbiological assay with EDTA-imipenem. Genomic comparisons and sequence analyses conducted with these isolates revealed the presence of bla(VIM-2) in two clonally related isolates, and bla(IMP-15) in a clonally unrelated isolate. Both genes were found to be carried by class 1 integrons, and bla(IMP-15) was additionally present on a broad host-range plasmid. This is the first report of co-existing P. aeruginosa strains producing different MBLs in a Mexican hospital, highlighting the necessity of appropriate surveillance to prevent dissemination of carbapenem resistance.