María Alicia Zon
Grupo México
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Alicia Zon.
Talanta | 2011
Fernando Javier Arévalo; Adrián Marcelo Granero; Héctor Fernández; Julio Raba; María Alicia Zon
The development of an electrochemical immunosensor incorporated in a micro fluidic cell for quantification of citrinin (CIT) mycotoxin in rice samples is described for the first time. Both CIT present in rice samples and immobilized on a gold surface electrodeposited on a glassy carbon (GC) electrode modified with a cysteamine self-assembled monolayer were allowed to compete for the monoclonal mouse anti-CIT IgG antibody (mAb-CIT) present in solution. Then, an excess of rabbit anti mouse IgG (H+L) labelled with the horseradish peroxidase (secAb-HRP) was added, which reacts with the mAb-CIT which is in the immuno-complex formed with the immobilized CIT on the electrode surface. The HPR, in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the oxidation of catechol (H(2)Q) whose back electrochemical reduction was detected on a GC electrode at -0.15 V vs Ag/AgCl by amperometric measurements. The current measured is proportional to the enzymatic activity and inversely proportional to the amount of CIT present in the rice samples. This immunosensor for CIT showed a range of work between 0.5 and 50 ng mL(-1). The detection (LOD) and the quantification (LOQ) limits were 0.1 and 0.5 ng mL(-1), respectively. The coefficients of variation intra- and inter-assays were less than 6%. The electrochemical detection could be done within 2 min and the assay total time was 45 min. The immunosensor was provided to undertake at least 80 determinations for different samples with a minimum previous pre-treatment. Our electrochemical immunosensor showed a higher sensitivity and reduced analysis time compared to other analytical methods such as chromatographic methods. This methodology is fast, selective and very sensitive. Thus, the immunosensor showed to be a very useful tool to determine CIT in samples of cereals, mainly rice samples.
Journal of Electroanalytical Chemistry | 1992
Héctor Fernández; María Alicia Zon
Abstract Solvent effects on the heterogeneous electron exchange between N , N , N ′, N ′-tetramethyl- p -phenylendiamine (TMPD) and its monocation radical (TMPD ·+ ) have been studied by chronocoulometry at a platinum electrode in perchlorate solutions in a wide range of aprotic and hydrogen-bonded solvents. Formal potentials, diffusion coefficients, anodic transfer coefficients and formal rate constants have been evaluated. The variation of the formal potential with the solvent can be interpreted by determining the solvent—solvent—solute interactions using Taft theory. Correlations between predicted and experimental formal potentials for the Taft model were an improvement over those obtained using the Gutmann donor number approach. A weak correlation between the anodic transfer coefficient and the Taft β parameter was also found. The variations in the rate constants were analyzed on the basis of current electron-transfer models using a statistical method to separate the effects of the longitudinal relaxation time τ L from those of the solvent permittivity parameter γ. It has been shown that the dynamics of solvent relaxation affect the heterogeneous electron-transfer rate in this case, but the rate constants depend on τ −0.53 instead of τ −1 , as theory predicts. The degree of reaction adiabaticity and the relative sizes of the inner- and outer-sphere components of the Gibbs energy of activation were considered.
Talanta | 2010
Adrián Marcelo Granero; Héctor Fernández; Elizabeth Agostini; María Alicia Zon
An amperometric biosensor based on peroxidases from Brassica napus hairy roots (PBHR) used to determine the total polyphenolic content in wine and tea samples is proposed by the first time. The method employs carbon paste (CP) electrodes filled up with PBHR, ferrocene (Fc), and multi-walled carbon nanotubes embedded in a mineral oil (MWCNT+MO) at a given composition (PBHR-Fc-MWCNT+MO). The biosensor was covered externally with a dialysis membrane, which was fixed at the electrode body side part with a Teflon laboratory film and an O-ring. Calibration curves obtained from steady-state currents as a function of the concentration of a polyphenolic standard reference compound such as t-resveratrol (t-Res) or caffeic acid (CA) were then used to estimate the total polyphenolic content in real samples. The reproducibility and the repeatability were of 7.0% and 4.1% for t-Res (8.4% and 5.2% for CA), respectively, showing a good biosensor performance. The calibration curves were linear in a concentration range from 0.05 to 52 mg L(-1) and 0.06 to 69 mg L(-1) for t-Res and CA, respectively. The lowest polyphenolic compound concentration values measured experimentally for a signal to noise ratio of 3:1 were 0.023 mg L(-1) and 0.020 mg L(-1) for t-Res and CA, respectively.
Talanta | 2010
Fernando Javier Arévalo; Germán A. Messina; Patricia Gabriela Molina; María Alicia Zon; Julio Raba; Héctor Fernández
Progesterone (P4) is a steroidal hormone with a vital role in the maintenance of human and animal health. This paper describes the development of an immunosensor coupled to glassy carbon (GC) electrode and integrated to a microfluidic system to quantify P4 from bovine serum samples in a fast and sensitive way. The serum samples spiked with a given P4 concentration and a given P4 concentration bound to horseradish peroxide (HPR) were simultaneously added and, therefore, they competed immunologically with sheep monoclonal anti-P4 antibodies that were immobilized at a rotating disk. HRP in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the chatecol (H(2)Q) oxidation to benzoquinone (Q). Its reverse electrochemical reduction to H(2)Q can be detected at a GC electrode surface at -0.15 V by chronoamperometric measurements. These current responses are proportional to the enzyme activity and inversely proportional to the P4 amount present in bovine serum samples. This P4 immunosensor showed a linear working range from 0.5 to 12.5 ng mL(-1). The detection (DL) and quantification (QL) limits were 0.2 and 0.5 ng mL(-1), respectively. The electrochemical immunosensor had a higher sensitivity than the ELISA method using conventional spectrophotometric detections. However, both methods allowed us to obtain similar detection limits. The immunosensor allowed us to make up to 100 determinations on different samples without any previous pre-treatment. This behavior proved to be suitable to detect P4 in routine veterinary, clinical, biological, physiological, and analytical assays.
Food Chemistry | 2011
Sebastián Noel Robledo; María Alicia Zon; Claudio Ceballos; Héctor Fernández
A simple electroanalytical method using square wave voltammetry at a Pt band ultramicroelectrode to perform a qualitative and quantitative analysis of different synthetic antioxidant mixtures permitted by official regulations in edible oils is proposed. The methodology was based on the comparison of voltammetric signals obtained in acetonitrile+0.1M (C4H9)4NF6P with those recorded in the same reaction medium when different aliquots of (C4H9)4NOH were added to allow a qualitative differentiation between antioxidants. Firstly, studies on solutions prepared from commercial reagents were carried out. Then, the results obtained were transferred to the analysis of a real matrix, i.e., an edible olive oil. From real samples spiked with a known amount of different synthetic antioxidant mixtures, we could deduce the presence of these antioxidants by comparing results obtained in the neutral medium with those obtained after the successive addition of base. The standard addition method was used to quantify the individually spiked synthetic antioxidants in the real sample. Recovery percentages were between 88% and 118%. The reproducibility was 1.5%, 3.1%, 4.1% and 4.1% in ACN+0.1M TBAHFP and 1.5%, 4.6%, 6.6% and 2.5% in Bz/EtOH (1:2)+0.1M H2SO4 for TBHQ, BHA, BHT and PG, respectively. The repeatability was 1% for PG in both media. These parameters show a good system performance.
Electrochimica Acta | 1987
María Alicia Zon; Héctor Fernández; Leonides Sereno; J.J. Silber
Abstract The stability constant of the EDA complex between N,N,N′,N′-tetramethyl-p-phenylendiamine and m-dinitrobenzene in acetonitrile has been studied by cyclic voltammetry and potentiometric titration at constant finite current. For comparison, spectral measurements were made. The spectroscopic techniques allowed us to assume the formation of a 1:1 EDA complex of which stability in acetonitrile is lower than that previously reported in chloroform. This solvent effect is expected for such weak complexes. The electrochemical techniques give a higher value of the stability constant in similar conditions. The possible causes of the discrepancies are discussed. However, the enthalpy and entropy values for the process closely agree in both electrochemical and spectroscopic methods. This is good evidence that both techniques are accounting for the same type of interaction. The electrochemical techniques, and particularly cyclic voltammetry, seem to be fast and sensible methods to study EDA complex interactions in polar aprotic solvents.
Biosensors and Bioelectronics | 2015
Andrés González-Techera; María Alicia Zon; Patricia Gabriela Molina; Héctor Fernández; Gualberto González-Sapienza; Fernando Javier Arévalo
The development of immunosensors for the detection of small molecules is of great interest because of their simplicity, high sensitivity and extended analytical range. Due to their size, small compounds cannot be simultaneously recognized by two antibodies impeding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. In this work, we combine the advantages of magneto-electrochemical immunosensors with the improved sensitivity and direct proportional signal of noncompetitive immunoassays to develop a new Phage Anti-Immunocomplex Electrochemical Immunosensor (PhAIEI) for the detection of the herbicide atrazine. The noncompetitive assay is based on the use of recombinant M13 phage particles bearing a peptide that specifically recognizes the immunocomplex of atrazine with an anti-atrazine monoclonal antibody. The PhAIEI performed with a limit of detection (LOD) of 0.2 pg mL(-1), which is 200-fold better than the LOD obtained using the same antibody in an optimized conventional competitive ELISA, with a large increase in working range. The developed PhAIEI was successfully used to assay undiluted river water samples with no pretreatment and excellent recoveries. Apart from the first demonstration of the benefits of integrating phage anti-immunocomplex particles into electrochemical immunosensors, the extremely low and environmentally relevant detection limits of atrazine attained with the PhAIEIS may have direct applicability to fast and sensitive detection of this herbicide in the environment.
Bioelectrochemistry | 2013
Vanesa Gimena Lourdes Zachetti; Adrian Marcelo Granero; Sebastián Noel Robledo; María Alicia Zon; Héctor Fernández
An amperometric biosensor based on horseradish peroxidase (EC1.11.1.7,H2O2-oxide-reductases) to determine the content of citrinin mycotoxin in rice samples is proposed by the first time. The method uses carbon paste electrodes filled up with multi-walled carbon nanotubes embedded in a mineral oil, horseradish peroxidase, and ferrocene as a redox mediator. The biosensor is covered externally with a dialysis membrane, which is fixed to the body side of the electrode with a Teflon laboratory film, and an O-ring. The reproducibility and the repeatability were of 7.0% and 3.0%, respectively, showing a very good biosensor performance. The calibration curve was linear in a concentration range from 1 to 11.6nM. The limits of detection and quantification were 0.25nM and 0.75nM, respectively. For comparison, the citrinin content in rice samples was also determined by fluorimetric measurements. A very good correlation was obtained between the electrochemical and spectrophotometric methods.
Biosensors and Bioelectronics | 2012
Fernando Javier Arévalo; Andrés González-Techera; María Alicia Zon; Gualberto González-Sapienza; Héctor Fernández
Immunosensors for small analytes have been a great addition to the analytical toolbox due to their high sensitivity and extended analytical range. In these systems the analyte is detected when it competes for binding to the detecting antibody with a tracer compound. In this work we introduce the use of phage particles bearing peptides that mimic the target analyte as surrogates for conventional tracers. As a proof of concept, we developed a magneto-electrochemical immunosensor (EI) for the herbicide molinate and compare its performance with conventional formats. Using the same anti-molinate antibody and phage particles bearing a molinate peptidomimetic, the EI performed with an IC(50) of 0.15 ngmL(-1) (linear range from 4.4 × 10(-3) to 10 ngmL(-1)). Compared to the conventional ELISA, the EI was faster (minutes), performed with a much wider linear range, and the detection limit that was 2500-fold lower. The EI produced consistent measurements and could be successfully used to assay river water samples with excellent recoveries. By using the same EI with a conventional tracer, we found that an important contribution to the gain in sensitivity is due to the filamentous structure of the phage (9 × 1000 nm) which works as a multienzymatic tracer, amplifying the competitive reaction. Since phage-borne peptidomimetics can be selected from phage display libraries in a straightforward systematic manner and their production is simple and inexpensive, they can contribute to facilitate the development of ultrasensitive biosensors.
Analytica Chimica Acta | 2016
Licarion Pinto; César Horacio Díaz Nieto; María Alicia Zon; Héctor Fernández; Mário César Ugulino de Araújo
Biogenic amines (BAs) are used for identifying spoilage in food. The most common are tryptamine (TRY), 2-phenylethylamine (PHE), putrescine (PUT), cadaverine (CAD) and histamine (HIS). Due to lack of chromophores, chemical derivatization with dansyl was employed to analyze these BAs using high performance liquid chromatography with a diode array detector (HPLC-DAD). However, the derivatization reaction occurs with any primary or secondary amine, leading to co-elution of analytes and interferents with identical spectral profiles, and thus causing rank deficiency. When the spectral profile is the same and peak misalignment is present on the chromatographic runs, it is not possible to handle the data only with Multivariate Curve Resolution and Alternative Least Square (MCR-ALS), by augmenting the time, or the spectral mode. A way to circumvent this drawback is to receive information from another detector that leads to a selective profile for the analyte. To overcome both problems, (tri-linearity break in time, and spectral mode), this paper proposes a new analytical methodology for fast quantitation of these BAs in fish with HPLC-DAD by using the icoshift algorithm for temporal misalignment correction before MCR-ALS spectral mode augmented treatment. Limits of detection, relative errors of prediction (REP) and average recoveries, ranging from 0.14 to 0.50 µg mL(-1), 3.5-8.8% and 88.08%-99.68%, respectively. These are outstanding results obtained, reaching quantification limits for the five BAs much lower than those established by the Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), and the European Food Safety Authority (EFSA), all without any pre-concentration steps. The concentrations of BAs in fish samples ranged from 7.82 to 29.41 µg g(-1), 8.68-25.95 µg g(-1), 4.76-28.54 µg g(-1), 5.18-39.95 µg g(-1) and 1.45-52.62 µg g(-1) for TRY, PHE, PUT, CAD, and HIS, respectively. In addition, the proposed method spends less than 4 min in an isocratic run, consuming less solvent in accordance with the principles of green analytical chemistry.