Maria Antonietta Loi
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Antonietta Loi.
Advanced Materials | 2010
Markus Scharber; Markus Koppe; Jia Gao; Fabrizio Cordella; Maria Antonietta Loi; Patrick Denk; Mauro Morana; Hans-Joachim Egelhaaf; Karen Forberich; Gilles Dennler; Russ Gaudiana; Dave Waller; Zhengguo Zhu; Xiaobo Shi; Christoph J. Brabec
Bulk heterojunction solar cells have attracted considerable attention over the past several years due to their potential for low-cost photovoltaic technology. The possibility of manufacturing modules via a standard printing/coating method in a roll-to-roll process in combination with the use of low-cost materials will lead to a watt-peak price of less than 1 US
Applied Physics Letters | 2004
Constance Rost; S. Karg; Walter Riess; Maria Antonietta Loi; Mauro Murgia; Michele Muccini
within the next few years. [1] Despite the low-cost potential, the power conversion efficiency of bulk heterojunction devices is low compared to inorganic solar cells. Efficiencies in the range of 5‐6% have been certified at NREL and AIST usually on devices with small active areas. [2] The current understanding of bulk heterojunction solar cells suggests that the maximum efficiency is in the range of 10‐12%. [3] Several reasons for the power conversion efficiency limitation have been identified. [1] Some of the prerequisites for achieving highest efficiencies are donor and acceptor materials with optimized energy levels [highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)], efficient charge transport in the donor‐acceptor blend, efficient charge generation and limited recombination losses. Power conversion efficiency is strongly dependent on charge transport and charge generation, which are dominated by the phase behavior of the donor and acceptor molecules. The resulting, and often unfavorable, nanomorphology of this two-component blend limits the power conversion efficiency of bulk heterojunction solar cells. Precise control of the nanomorphology is very difficult and has been achieved only for a few systems. [4‐6] The relation between the chemical structure of donor and acceptor materials and the nanomorphology that they form when they are blended is currently not well understood, and as will be shown in this paper, minor changes in the chemical structure can cause major changes in the performance of the materials in organic solar cells. In this work we demonstrate the effect of replacing a carbon atom with a silicon atom on the main chain of the conjugated polymer. The approach has been used previously, and promising materials for field-effect transistors and organic solar cells have been demonstrated. [7‐9] We find that making this simple substitution in poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4b 0 ]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) yields a polysilole, e.g., poly[(4,4 0 -bis(2-ethylhexyl)dithieno[3,2b:2 0 ,3 0 -d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5 0 -diyl] (Si-PCPDTBT), with a higher crystallinity, improved charge transport properties, reduced bimolecular recombination, and a reduced formation of charge transfer complexes when blended with a fullerene derivative. This silole-based polymer is found to form a highly functional nanomorphology when blended with [6,6]-phenyl C71-butyric acid methyl ester (C70-PCBM), and solar cells prepared using this blend gave efficiencies of 5.2%, certified by the National Renewable Energy Laboratory. [1] The presented polymer is the first low-bandgap semiconducting polymer to have a certified efficiency of over 5%. The chemical structure of the subject polymer is shown in Figure 1. The material was synthesized following the procedure described previously. [10] The synthesis and properties of the carbon-bridged polymer have been described before. [11,12] Figure 2a shows the absorbance and photoluminescence (PL) spectra of a thin solid film of the pristine Si-bridged polymer and
Applied Physics Letters | 2002
Ivan Montanari; Ana F. Nogueira; Jenny Nelson; James R. Durrant; Christoph Winder; Maria Antonietta Loi; Niyazi Serdar Sariciftci; Christoph J. Brabec
We demonstrate a light-emitting organic field-effect transistor (OFET) with pronounced ambipolar current characteristics. The ambipolar transport layer is a coevaporated thin film of α-quinquethiophene (α-5T) as hole-transport material and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) as electron-transport material. The light intensity is controlled by both the drain–source voltage VDS and the gate voltage VG. Moreover, the latter can be used to adjust the charge-carrier balance. The device structure serves as a model system for ambipolar light-emitting OFETs and demonstrates the general concept of adjusting electron and hole mobilities by coevaporation of two different organic semiconductors.
Advanced Materials | 2014
Satria Zulkarnaen Bisri; Claudia Piliego; Jia Gao; Maria Antonietta Loi
The recombination kinetics of photogenerated charge carriers in a composite of poly[2-methoxy-5- (3′,7′-dimethyloctyloxy)-1-4-phenylene vinylene], (MDMO–PPV) and the functionalised fullerene 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 are investigated at room temperature by transient absorption spectroscopy. The decay dynamics of positively charged MDMO–PPV polarons were found to be either monophasic or biphasic, depending upon the laser excitation density employed. The slower, power law, decay phase (100 ns–10 ms) is attributed to recombination dynamics of localized polarons, while the fast decay component (<20 ns) is attributed to recombination of relatively mobile polarons observed when the density of localized states is exceeded by the density of photogenerated polarons (∼1017 cm−3). The implications of these observations are discussed in relation to polymer/C60 photovoltaic cells.
Accounts of Chemical Research | 2014
Suman K. Samanta; Martin Fritsch; Ullrich Scherf; Widianta Gomulya; Satria Zulkarnaen Bisri; Maria Antonietta Loi
Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection.
Advanced Materials | 2013
Widianta Gomulya; Guadalupe Díaz Costanzo; Elton Jose Figueiredo de Carvalho; Satria Zulkarnaen Bisri; Vladimir Derenskyi; Martin Fritsch; Nils Fröhlich; Sybille Allard; Pavlo Gordiichuk; Andreas Herrmann; Siewert J. Marrink; Maria Cristina dos Santos; U. Scherf; Maria Antonietta Loi
The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the π-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like π-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices.
ACS Nano | 2011
Maksym Yarema; Stefan Pichler; Mykhailo Sytnyk; Robert Seyrkammer; R. T. Lechner; Gerhard Fritz-Popovski; Dorota Jarzab; Krisztina Szendrei; Roland Resel; Oleksandra Korovyanko; Maria Antonietta Loi; Oskar Paris; Guenter Hesser; W. Heiss; G. Hesser
Efficient selection of semiconducting SWCNTs of large diameter range (0.8-1.6 nm) on demand is demonstrated. Different diameters of SWCNT are systematically selected by tuning the alkyl side-chain lengths of the wrapping polymers of similar backbone. The exceptional quality and high concentration of the SWCNTs is validated by the outstanding optical properties and the highly performing random network ambipolar field-effect transistors.
Journal of the American Chemical Society | 2012
Maksym V. Kovalenko; Richard D. Schaller; Dorota Jarzab; Maria Antonietta Loi; Dmitri V. Talapin
Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.
Journal of Physical Chemistry B | 2008
Oleksandr V. Mikhnenko; Fabrizio Cordella; Alexander B. Sieval; Jan C. Hummelen; Paul W. M. Blom; Maria Antonietta Loi
Inorganic semiconductor nanocrystals (NCs) with bright, stable, and wavelength-tunable luminescence are very promising emitters for various photonic and optoelectronic applications. Recently developed strategies for inorganic surface capping of colloidal NCs using metal chalcogenide complexes have opened new perspectives for their applications. Here we report an all-inorganic surface functionalization of highly luminescent IR-emitting PbS-CdS NCs and studies of their luminescence properties. We show that inorganic capping allows simple low-temperature encapsulation of inorganic NCs into a solution-cast IR-transparent amorphous As(2)S(3) matrix. The resulting all-inorganic thin films feature stable IR luminescence in the telecommunication wavelength region. The high optical dielectric constant of As(2)S(3) also helps reduce the dielectric screening of the radiating field inside the quantum dot, enabling fast radiative recombination in PbS-CdS NCs.
Advanced Materials | 2012
Satria Zulkarnaen Bisri; Jia Gao; Vladimir Derenskyi; Widianta Gomulya; Igor Iezhokin; Pavlo Gordiichuk; Andreas Herrmann; Maria Antonietta Loi
The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of approximately 3 nm (approximately 1.5 x 10 (-4) cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (approximately 3.2 x 10 (-4) cm2/ s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.
Collaboration
Dive into the Maria Antonietta Loi's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputs