Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Antonietta Zoroddu is active.

Publication


Featured researches published by Maria Antonietta Zoroddu.


Journal of Inorganic Biochemistry | 1996

An electron spin resonance study and antimicrobial activity of copper(II)-phenanthroline complexes

Maria Antonietta Zoroddu; S Zanetti; Rebecca Pogni; Riccardo Basosi

The antimicrobial activities of some copper(II) binary complexes with unsubstituted and different substituted phenanthroline ligands were investigated. A considerable increase in the biocidal activity of the ligands on being coordinated with the copper(II) ions was observed in terms of their minimum inhibitory concentration (MIC) values. EPR measurements were performed at room and low temperature with the aim of gaining an insight into the structure/activity relationship of these complexes. Subtle differences in the chemical arrangement result in appreciable differences in the antimicrobial activity. Copper(II) complexes with 2,9-dimethyl derivative phenanthrolines were observed to be more active against Staphylococcus aureus and Escherichia coli.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functionalized multiwalled carbon nanotubes as ultrasound contrast agents

Lucia Gemma Delogu; Gianpaolo Vidili; Enrica Venturelli; Cécilia Ménard-Moyon; Maria Antonietta Zoroddu; Giovannantonio Pilo; Paola Nicolussi; Ciriaco Ligios; Davide Bedognetti; Francesco Sgarrella; Roberto Manetti; Alberto Bianco

Ultrasonography is a fundamental diagnostic imaging tool in everyday clinical practice. Here, we are unique in describing the use of functionalized multiwalled carbon nanotubes (MWCNTs) as hyperechogenic material, suggesting their potential application as ultrasound contrast agents. Initially, we carried out a thorough investigation to assess the echogenic property of the nanotubes in vitro. We demonstrated their long-lasting ultrasound contrast properties. We also showed that ultrasound signal of functionalized MWCNTs is higher than graphene oxide, pristine MWCNTs, and functionalized single-walled CNTs. Qualitatively, the ultrasound signal of CNTs was equal to that of sulfur hexafluoride (SonoVue), a commercially available contrast agent. Then, we found that MWCNTs were highly echogenic in liver and heart through ex vivo experiments using pig as an animal model. In contrast to the majority of ultrasound contrast agents, we observed in a phantom bladder that the tubes can be visualized within a wide variety of frequencies (i.e., 5.5–10 MHz) and 12.5 MHz using tissue harmonic imaging modality. Finally, we demonstrated in vivo in the pig bladder that MWCNTs can be observed at low frequencies, which are appropriate for abdominal organs. Importantly, we did not report any toxicity of CNTs after 7 d from the injection by animal autopsy, organ histology and immunostaining, blood count, and chemical profile. Our results reveal the enormous potential of CNTs as ultrasound contrast agents, giving support for their future applications as theranostic nanoparticles, combining diagnostic and therapeutic modalities.


Biochimica et Biophysica Acta | 2000

Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail

Maria Antonietta Zoroddu; Teresa Kowalik-Jankowska; Henryk Kozlowski; Henriette Molinari; Konstantin Salnikow; Limor Broday; Max Costa

Chromatin proteins are believed to represent reactive sites for nickel binding. The unique structure of the N-terminal tail of histone H4 contains sites for post-translational modification close to a histidine residue capable of anchoring binding sites for metal ions. We have analyzed as a minimal model for the H4 tail, the blocked peptide CH(3)CO-AKRHRK-CONH(2) for nickel and copper binding. Ultraviolet-visible, circular dichroism, electron paramagnetic resonance and nuclear magnetic resonance spectroscopic analysis showed that histidine acts as an anchoring metal binding site. A 1N complex is formed between pH=5-7 and 4-6 for Ni(II) and Cu(II), respectively, while at a higher pH a series of 4N complexes are formed. Above pH 8, the 2N high-spin octahedral resulted in a 4N low-spin planar Ni(II) complex. The stability constants of the Cu(II) (3N, 4N) and Ni(II) (4N) complexes with the peptide model of the H4 were distinctly higher than those for a similar blocked peptide with a histidine in the fourth position. Significant shifts in the alphaproton region in the 1H NMR spectrum of the 4N Ni-complex showed that the conformation of the peptide had been dramatically affected following Ni(II) complexation.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Associations between Arsenic Exposure and Global Posttranslational Histone Modifications among Adults in Bangladesh

Yana Chervona; Megan N. Hall; Adriana Arita; Fen Wu; Hong Sun; Hsiang-Chi Tseng; Eunus Ali; Mohammad Nasir Uddin; Xinhua Liu; Maria Antonietta Zoroddu; Mary V. Gamble; Max Costa

Background: Exposure to arsenic (As) is associated with an increased risk of several cancers as well as cardiovascular disease, and childhood neuro-developmental deficits. Arsenic compounds are weakly mutagenic, alter gene expression and posttranslational histone modifications (PTHMs) in vitro. Methods: Water and urinary As concentrations as well as global levels of histone 3 lysine 9 di-methylation and acetylation (H3K9me2 and H3K9ac), histone 3 lysine 27 tri-methylation and acetylation (H3K27me3 and H3K27ac), histone 3 lysine 18 acetylation (H3K18ac), and histone 3 lysine 4 trimethylation (H3K4me3) were measured in peripheral blood mononuclear cells (PBMC) from a subset of participants (N = 40) of a folate clinical trial in Bangladesh (FACT study). Results: Total urinary As (uAs) was positively correlated with H3K9me2 (r = 0.36, P = 0.02) and inversely with H3K9ac (r = −0.47, P = 0.002). The associations between As and other PTHMs differed in a gender-dependent manner. Water As (wAs) was positively correlated with H3K4me3 (r = 0.45, P = 0.05) and H3K27me3 (r = 0.50, P = 0.03) among females and negatively correlated among males (H3K4me3: r = −0.44, P = 0.05; H3K27me3: r = −0.34, P = 0.14). Conversely, wAs was inversely associated with H3K27ac among females (r = −0.44, P = 0.05) and positively associated among males (r = 0.29, P = 0.21). A similar pattern was observed for H3K18ac (females: r = −0.22, P = 0.36; males: r = 0.27, P = 0.24). Conclusion: Exposure to As is associated with alterations of global PTHMs; gender-specific patterns of association were observed between As exposure and several histone marks. Impact: These findings contribute to the growing body of evidence linking As exposure to epigenetic dysregulation, which may play a role in the pathogenesis of As toxicity. Cancer Epidemiol Biomarkers Prev; 21(12); 2252–60. ©2012 AACR.


Current Medicinal Chemistry | 2014

Toxicity of Nanoparticles

Maria Antonietta Zoroddu; Serenella Medici; Alessia Ledda; Valeria Marina Nurchi; Joanna Izabela Lachowicz; Massimiliano Peana

Nowadays more than thousands of different nanoparticles are known, though no well-defined guidelines to evaluate their potential toxicity and to control their exposure are fully provided. The way of entry of nanoparticles together with their specificities such as chemistry, chemical composition, size, shape or morphology, surface charge and area can influence their biological activities and effects. A specific property may give rise to either a safe particle or to a dangerous one. The small size allows nanoparticles to enter the body by crossing several barriers, to pass into the blood stream and lymphatic system from where they can reach organs and tissues and strictly interact with biological structures, thus damaging their normal functions in different ways. This review provides a summary of what is known on the toxicology related to the specificity of nanoparticles, both as technological tools or ambient pollutants. The aim is to highlight their potential hazard and to provide a balanced update on all the important questions and directions that should be focused in the near future.


Journal of Inorganic Biochemistry | 2009

Copper and nickel binding in multi-histidinic peptide fragments

Maria Antonietta Zoroddu; Serenella Medici; Massimiliano Peana

Multi-histidinic peptides have been investigated for Cu(II) and Ni(II) binding. We present spectroscopic evidence that, at low pH and from sub-stoichiometric to stoichiometric amounts of metals, macrochelate and multi-histidinic Cu(II) and Ni(II) complexes form; but, from neutral pH and above, both copper and nickel bind to individual histidine residues. NMR, EPR, UV-Visible (UV-Vis) and UV-Visible CD spectroscopy were used to understand about the variety of complexes obtained at low pHs, where amide deprotonation and coordination is unfavoured. A structural transition between two coordination geometries, as the pH is raised, was observed. Metal binds to N(delta) of histidine imidazole when main-chain coordination is involved and coordinates via N(epsilon) under mildly acidic conditions and sub-stoichiometric amounts of metals. From EPR results a distortion from planarity has been evidenced for the Cu(II) multi-histidinic macrochelate systems, which may be relevant to biological activity. The behaviour of our peptides was comparable to the pH dependent effect on Cu(II) coordination observed in octapeptide repeat domain in prion proteins and in amyloid precursor peptides involved in Alzheimers disease. Changes in pH and levels of metal affect coordination mode and can have implications for the affinity, folding and redox properties of proteins and peptide fragments.


Journal of Inorganic Biochemistry | 2001

Ni(II) and Cu(II) binding with a 14-aminoacid sequence of Cap43 protein, TRSRSHTSEGTRSR

Maria Antonietta Zoroddu; Teresa Kowalik-Jankowska; Henryk Kozlowski; Konstantin Salnikow; Max Costa

The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.


Dalton Transactions | 2008

Copper(II) binding to Cap43 protein fragments

Maria Antonietta Zoroddu; Teresa Kowalik-Jankowska; Serenella Medici; Massimiliano Peana; Henryk Kozlowski

The C-terminal 20 and 30 amino acid sequences of Cap43 protein were chosen as models to study their interactions with Cu(II) ions. The behaviour of the 20 amino acid Ac-TRSRSH6TSEG-TRSRSH16TSEG and 30 amino acid Ac-TRSRSH6TSEG-TRSRSH16TSEG-TRSRSH26TSEG peptides towards Cu(II) ions at different pH values and different ligand-to-metal molar ratios, was examined. Spectroscopic (EPR, UV-Vis) and potentiometric techniques were performed to understand the details of metal binding to the peptides. The study showed that, starting from pH 4.0, each 10 amino acid fragment T1R2S3R4S5H6T7S8E9G10 was able to independently coordinate a single Cu(II) ion. The coordination mode involved the imidazole nitrogen of histidine H6 residue, and three amidic nitrogens from histidine H6, serine S5, and arginine R4 residues, respectively.


Dalton Transactions | 2007

Multidimensional NMR spectroscopy for the study of histone H4–Ni(II) interaction

Maria Antonietta Zoroddu; Massimiliano Francesco Peana; Serenella Medici

The N-terminal 30-amino acid tail of histone H4, a nuclear protein, was studied as a model for the interaction of this protein with Ni(ii) ions. The behaviour of the ends-blocked Ac-SGRGKGGKGLGKGGA(15)K(16)R(17)H(18)R(19)KVLRDNIQGIT-Am fragment towards Ni(ii) was analyzed with multidimensional NMR (1D, 2D TOCSY, NOESY) and UV-Vis spectroscopy. As expected, the coordination involved the imidazolic nitrogen of the His(18) residue and the three deprotonated amidic nitrogens of the His(18), Arg(17) and Lys(16) residues, respectively. A model for the structure of the complex was calculated from the inter-residual NOEs recorded in 2D NOESY spectra. The structure obtained shows that the interaction with the metal is responsible for deep changes in the conformation of the peptide, blocking the side chain of Arg(17) and Lys(16) residues above the coordination plane. These structural modifications may be physiologically relevant to the mechanism of nickel carcinogenesis.


Dalton Transactions | 2012

Mn(II) and Zn(II) interactions with peptide fragments from Parkinson's disease genes

Serenella Medici; Massimiliano Peana; Lucia Gemma Delogu; Maria Antonietta Zoroddu

Two peptide sequences from PARK9 Parkinsons disease gene, ProAspGluLysHisGluLeu, (P(1)D(2)E(3)K(4)H(5)E(6)L(7)) (1) and PheCysGlyAspGlyAlaAsnAspCysGly (F(1)C(2)G(3)D(4)G(5)A(6)N(7)D(8)C(9)G(10)) (2) were tested for Mn(II), Zn(II) and Ca(II) binding. The fragments are located from residues 1165 to 1171 and 1184 to 1193 in the PARK9 encoded protein. This protein can protect cells from poisoning of manganese, which is an environmental risk factor for a Parkinsons disease-like syndrome. Mono- and bi-dimensional NMR spectroscopy has been used to understand the details of metal binding sites at different pH values and at different ligand to metal molar ratios. Mn(II) and Zn(II) coordination with peptide (1) involves imidazole N(ε) or N(δ) of His(5) and carboxyl γ-O of Asp(2), Glu(3) and Glu(6) residues. Six donor atoms participate in Mn(II) binding resulting in a distorted octahedral geometry, possibly involving bidentate interaction of carboxyl groups; four donor atoms participate in Zn(II) binding resulting in a tetracoordinate geometry. Mn(II) and Zn(II) coordination involves the two cysteine residues with peptide (2); Mn(II) accepts additional ligand bonds from the carboxyl γ-O of Asp(4) and Asp(8) to complete the coordination sphere; the unoccupied sites may contain solvent molecules. The failure of Ca(II) ions to bind to either peptide (1) or (2) appears to result, under our conditions, from the absence of chelating properties in the chosen fragments.

Collaboration


Dive into the Maria Antonietta Zoroddu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Marina Nurchi

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge