Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Asplund is active.

Publication


Featured researches published by Maria Asplund.


Biomedical Materials | 2009

Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes

Maria Asplund; Elin Thaning; Johan Lundberg; Ann-Christin Sandberg-Nordqvist; B Kostyszyn; Olle Inganäs; H. von Holst

Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT:heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT:heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.


Biointerphases | 2008

Composite biomolecule/PEDOT materials for neural electrodes

Maria Asplund; Hans von Holst; Olle Inganäs

Electrodes intended for neural communication must be designed to meet both the electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet these requirements and therefore conducting polymers for neural electrodes have emerged as a field of interest. One clear advantage with polymer electrodes is the possibility to tailor the material to have optimal biomechanical and chemical properties for certain applications. To identify and evaluate new materials for neural communication electrodes, three charged biomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used as counterions in the electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting material is evaluated electrochemically and the amount of exposed biomolecule on the surface is quantified. PEDOT:biomolecule surfaces are also studied with static contact angle measurements as well as scanning electron microscopy and compared to surfaces of PEDOT electrochemically deposited with surfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT:heparin and PEDOT:HA, both have the electrochemical properties required for neural electrodes, and PEDOT:heparin also compares well to PEDOT:PSS. PEDOT:fibrinogen is found less suitable as neural electrode material.


Neuroepidemiology | 2009

Incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006

Maria Asplund; Mats Nilsson; Anders Jacobsson; Hans von Holst

Background: To define the epidemiological pattern of nerve injuries and traumatic amputations in Sweden, 1998–2006, and investigate possible targets for emerging neural engineering and neuroprosthetic technologies. Methods: The Swedish Hospital Discharge Register was used as the information base, including data from all public inpatient care, excluding outpatient data. ICD-10 codes were used to classify nerve injuries and traumatic amputations of high incidence levels or inpatient care time. Selected codes, causative factors, age and gender distribution were discussed in detail, and potential targets for tailored solutions were identified. Results: Incidence rate was determined as 13.9 for nerve injuries and 5.21 for amputations per 100,000 person-years. The majority of injuries occurred at the wrist and hand levels, although it could be concluded that these are often minor injuries requiring less than a week of hospitalization. The single most care-consuming nerve injury was brachial plexus injury, constituting on average 68 injuries and 960 hospital days annually. When minor amputations of fingers and toes were disregarded, the most frequent site of amputation was between the knee and ankle (24 patients/year). Conclusions: Based on an analysis of incidence and care time, we find that brachial plexus injuries and lower leg amputations should be the primary targets of new technologies.


Journal of Biomedical Materials Research Part B | 2010

Stability of poly(3,4‐ethylene dioxythiophene) materials intended for implants

Elin Thaning; Maria Asplund; Tobias Nyberg; Olle Inganäs; Hans von Holst

This study presents experiments designed to study the stability of the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT), under simulated physiological conditions using phosphate-buffered saline (PBS) and hydrogen peroxide (H(2)O(2)) (0.01 M) at 37 degrees C over a 5- to 6-week period. Voltage pulsing in PBS was used as an additional test environment. The influence of switching the counter ion used in electropolymerization from polystyrene sulphonate (PSS) to heparin was investigated. Absorbance spectroscopy and cyclic voltammetry were used to evaluate the material properties. Most of the samples in H(2)O(2) lost both electroactivity and optical absorbance within the study period, but PEDOT:PSS was found slightly more stable than PEDOT:heparin. Polymers were relatively stable in PBS throughout the study period, with around 80% of electroactivity remaining after 5 weeks, disregarding delamination, which was a significant problem especially for polymer on indium tin oxide substrates. Voltage pulsing in PBS did not increase degradation. The counter ion influenced the time course of degradation in oxidizing agents.


Journal of Biomedical Materials Research Part A | 2015

A detailed insight into drug delivery from PEDOT based on analytical methods: Effects and side effects

Christian Boehler; Maria Asplund

The possibility to release drugs from conducting polymers, like polypyrrole or poly(3,4-ethylenedioxythiophene) (PEDOT), has been described and investigated for a variety of different substances during the last years, showing a wide interest in these release systems. A point that has not been looked at so far however is the possibility of other substances, next to the intended ones, leaving the polymer film under the high voltage excursions during redox sweeping. In this study we target this weakness of commonly used detection methods by implementing a high precision analytical method (high-performance liquid chromatography) that allows a separation and subsequently a detailed quantification of all possible release products. We could identify a significantly more complex release behavior for a PEDOT:Dex system than has been assumed so far, revealing the active release of the monomer upon redox activation. The released EDOT could thereby be shown to result from the bulk material, causing a considerable loss of polymer (>10% during six release events) that could partly account for the observed degradation or delamination effects of drug-eluting coatings. The monomer leakage was found to be substantially higher for a PEDOT:Dex film compared to a PEDOT:PSS sample. This finding indicates an overestimation of drug release if side products are mistaken for the actual drug mass. Moreover the full picture of released substances implements the need for further studies to reduce the monomer leakage and identify possible adverse effects, especially in the perspective of releasing an anti-inflammatory substance for attenuation of the foreign body reaction toward implanted electrodes.


Biomaterials | 2015

Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes

Christian Boehler; Thomas Stieglitz; Maria Asplund

Micro-sized electrodes are essential for highly sensitive communication at the neural interface with superior spatial resolution. However, such small electrodes inevitably suffer from high electrical impedance and thus high levels of thermal noise deteriorating the signal to noise ratio. In order to overcome this problem, a nanostructured Pt-coating was introduced as add-on functionalization for impedance reduction of small electrodes. In comparison to platinum black deposition, all used chemicals in the deposition process are free from cytotoxic components. The grass-like nanostructure was found to reduce the impedance by almost two orders of magnitude compared to untreated samples which was lower than what could be achieved with conventional electrode coatings like IrOx or PEDOT. The realization of the Pt-grass coating is performed via a simple electrochemical process which can be applied to virtually any possible electrode type and accordingly shows potential as a universal impedance reduction strategy. Elution tests revealed non-toxicity of the Pt-grass and the coating was found to exhibit strong adhesion to the metallized substrate.


ACS Applied Materials & Interfaces | 2017

Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge

Christian Boehler; Felix Oberueber; Sabine Schlabach; Thomas Stieglitz; Maria Asplund

Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.


Frontiers in Neuroengineering | 2014

Anti-inflammatory polymer electrodes for glial scar treatment: bringing the conceptual idea to future results

Maria Asplund; Christian Boehler; Thomas Stieglitz

Conducting polymer films offer a convenient route for the functionalization of implantable microelectrodes without compromising their performance as excellent recording units. A micron thick coating, deposited on the surface of a regular metallic electrode, can elute anti-inflammatory drugs for the treatment of glial scarring as well as growth factors for the support of surrounding neurons. Electro-activation of the polymer drives the release of the substance and should ideally provide a reliable method for controlling quantity and timing of release. Driving signals in the form of a constant potential (CP), a slow redox sweep or a fast pulse are all represented in literature. Few studies present such release in vivo from actual recording and stimulating microelectronic devices. It is essential to bridge the gap between studies based on release in vitro, and the intended application, which would mean release into living and highly delicate tissue. In the biological setting, signals are limited both by available electronics and by the biological safety. Driving signals must not be harmful to tissue and also not activate the tissue in an uncontrolled manner. This review aims at shedding more light on how to select appropriate driving parameters for the polymer electrodes for the in vivo setting. It brings together information regarding activation thresholds for neurons, as well as injury thresholds, and puts this into context with what is known about efficient driving of release from conducting polymer films.


Scientific Reports | 2016

A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

Christian Boehler; Firat Güder; Umut M. Kücükbayrak; Margit Zacharias; Maria Asplund

On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.


Acta Biomaterialia | 2017

An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces

Carolin Kleber; Michael Bruns; Karen Lienkamp; Jürgen Rühe; Maria Asplund

This study presents a new conducting polymer hydrogel (CPH) system, consisting of the synthetic hydrogel P(DMAA-co-5%MABP-co-2,5%SSNa) and the conducting polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT), intended as coating material for neural interfaces. The composite material can be covalently attached to the surface electrode, can be patterned by a photolithographic process to influence selected electrode sites only and forms an interpenetrating network. The hybrid material was characterized using cyclic voltammetry (CV), impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS), which confirmed a homogeneous distribution of PEDOT throughout all CPH layers. The CPH exhibited a 2,5 times higher charge storage capacity (CSC) and a reduced impedance when compared to the bare hydrogel. Electrochemical stability was proven over at least 1000 redox cycles. Non-toxicity was confirmed using an elution toxicity test together with a neuroblastoma cell-line. The described material shows great promise for surface modification of neural probes making it possible to combine the beneficial properties of the hydrogel with the excellent electronic properties necessary for high quality neural microelectrodes. STATEMENT OF SIGNIFICANCE Conductive polymer hydrogels have emerged as a promising new class of materials to functionalize electrode surfaces for enhanced neural interfaces and drug delivery. Common weaknesses of such systems are delamination from the connection surface, and the lack of suitable patterning methods for confining the gel to the selected electrode site. Various studies have reported on conductive polymer hydrogels addressing one of these challenges. In this study we present a new composite material which offers, for the first time, the unique combination of properties: it can be covalently attached to the substrate, forms an interpenetrating network, shows excellent electrical properties and can be patterned via UV-irradiation through a structured mask.

Collaboration


Dive into the Maria Asplund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans von Holst

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elin Thaning

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge